Designing with FPGAs

Beyond Bigger, Faster, Cheaper...

Peter Alfke Xilinx, Inc.

peter.alfke@xilinx.com

© 2000 Xilinx, Inc.

art of this document may be reproduced or transmitted without the

Designing with FPGAs

- Why FPGAs ?
- Basic Architecture and New Features
- Designing for High Speed
- Designing for Signal Integrity
- Designing with BlockROMs
- Designing for Low Power
- Designing for Security
- Asynchronous Design Issues
- Tips and Tricks from the Xilinx Archives
- List of good URLs

© 2000 Xilii
All Rights R

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

Why FPGAs?

- Ideal for customized designs
 - Product differentiation in a fast-changing market
- Offer the advantages of high integration
 - High complexity, density, reliability
 - Low cost, power consumption, small physical size
- Avoid the problems of ASICs
 - high NRE cost, long delay in design and testing
 - increasingly demanding electrical issues

Fast Time-to-Market, fast response to market changes

© 2000 Xilinx All Rights Res

DesignCon2001 - 3

No part of this document may be reproduced or transmitted without the

FPGA Advantages

- Very fast custom logic
 - massively parallel operation
- Faster than microcontrollers and microprocessors
 - much faster than DSP engines
- More flexible than dedicated chipsets
 - allows unlimited product differentiation
- More affordable and less risky than ASICs
 - no NRE, minimum order size, or inventory risk
- Reprogrammable at any time
 - in design, in manufacturing, after installation

© 2000 XII

All Rights R

or transmitted without the

ASIC Problems

ASIC user must control design details:

Fault coverage

Clock-tree structure

Second / third-order electrical effects

clock distribution delay and clock skew glitch-free clock multiplexing and enable cross-talk, hold-time issues

FPGA user can concentrate on system design

Xilinx designers have solved the above issues

© 2000 Xilinx, Inc.

DesignCon2001 - 5

Makimoto's Wave

- 1957 to '67 Standard discrete devices (transistors, diodes)
- 1967 to '77 Custom LSI for calculators, radio, TV
- 1977 to '87 Standard microprocessors, custom software
- 1987 to '97 Custom logic in ASICs
- 1997 to '07 Standard Field-Programmable devices

We are in the early part of the FPGA cycle

Tsugio Makimoto, formerly Hitachi, Chairman of the Technology Board of Sony Semiconductor Network Co.

DesignCon2001 - 6

User Expectations

- Logic capacity at reasonable cost
 - 100,000 to a several million gates
 - On-chip fast RAM
- Clock speed
 - 150 MHz and above, global clocks, clock management
- Versatile I/O
 - To accommodate a variety of standards
- Design effort and time
 - synthesis, fast compile times,
 - tested and proven cores
- Power consumption
 - must stay within reasonable limits

© 2000 Xilinx, Inc.

DesignCon2001 - 7

No part of this document may be reproduced or transmitted without the

Bigger, Faster, Cheaper FPGAs

- Millions of gates
 - ->1 million RAM bits
- >200 MHz system speed,
 - -800 Mbps I/O
- From 0.3 ¢ to 3¢ per Logic Cell (LUT plus flip-flop)
 - Lowest for SpartanXL in high volume and simplest package
 - Highest for Virtex-II in low volume

FPGAs have evolved from glue logic to system platforms

© 2000 Xillinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the

Three Pillars of Progress

Technology

- smaller geometries, more and faster transistors
- better defect densities, larger chips, larger wafers, lower cost

Architecture

5

- system features: fast carry, memory, clock management
- hierarchical interconnect, controlled-impedance I/O

Design Methodology

- powerful and reliable cores, faster compilation
- modular, team-based design, internet-based tools

© 2000 Xilinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the

FPGA Technology in Production

In step with the best microprocessors

0.15 micron - 8 layer metal - up to 6 million gates Up to 420 MHz clock rate, 840 Mbps interface Certified cores for PCI64 etc

Virtex and Spartan II:0.25 micron5-layer metalVirtex-E:0.18 micron6-layer metalVirtex-II:0.15 micron8-layer metal

Copper technology in 2000

Copper with low-k dielectric in 2001

DesignCon2001 - 11

© 2000 Xilinx, Inc All Rights Reserve

No part of this document may be reproduced or transmitted without the

FPGA Architecture Today

- Logic, RAM, arithmetic, abundant interconnect
 - up to 67,000 LUTs and flip-flops
 - up to 144 dual-ported 18K-bit BlockRAM
 - up to 144 multipliers (18×18 bits, < 7 ns)
- Versatile I/O
 - -20 different standards, LVDS, LVPECL, etc.
 - Controlled impedance provides pc-board termination
- Clock management eliminates clock delay
 - and provides frequency synthesis and phase control
- Encrypted configuration provides security
 - Triple-DES encryption of the configuration bitstream

© 2000 Xilinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education.

Design Methodology

- Design entry
 - VHDL/Verilog, schematic, verified cores
- Synthesis
 - optimized for FPGA architecture
- Timing-driven design
 - optimizes for the requested performance
- Place and route
 - significantly smarter and faster algorithms
- Team-based design
- Internet reconfiguration

© 2000 Xilinx, Inc

DesignCon2001 - 13

No part of this document may be reproduced or transmitted without the

Wide Range of Users and Applications

Small devices, <150K gates Large devices, up to 6M gates

Small systems

Small budget

Short learning curve

Schematic design

Single designer

Large Systems

Existing EDA tools

ASIC experience

VHDL/Verilog, cores

Team-based design

One-stop shopping Compatibility with existing tools

Foundation software Alliance software
Spartan and CPLD Virtex and Virtex-II

DesignCon2001 – 14

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

© 2000 Xilinx, Inc. All Rights Reserved

Performance	e Parameters i
 Parameter 	Virtex-II-5 (ns)
CLB	
Combinatorial LUT delay	0.41
Set-up time through LUT	0.65
Carry delay per bit	0.045
Clock-to-Q delay	0.40
BlockRAM:	
set-up time (A,D)	0.30
Clock-to-out	2.89
Input	
Data pin to clock pin set-up	p 0.78
Data in delay	0.70
Output	
Data to output pad	2.45
Clock-to-output pad © 2000 Xilii Ali Rights R	
No part of this document may be repro express written permission of the Direc	

Performance Parameters II

Internal register-to-registerVirtex-II-516-bit adder317 MHz18 x 18 multiplier155 MHz24-bit synchronous counter305 MHz64-bit synchronous counter190 MHzDLL max output frequency420 MHz

Package-pin to package pin delays

64-bit decode, 6.8 ns 32 : 1 multiplexer 7.8 ns One-LUT combinatorial function 4.5 ns

Virtex-II parameters are preliminary and conservative

DesignCon2001 - 17

© 2000 Xilinx, Inc. All Rights Reserved

No part of this document may be reproduced or transmitted without the

Designing for High Speed

Understand the architecture, strength and limitations

LUTs,, LUT-RAMs, SRL16, Carry
Registered I/O, Output 3-state control flip-flop
Longlines, 3-state buffers,
Synchronous dual-ported BlockRAM
Global clocks with alitch-free enable and input m

Global clocks with glitch-free enable and input multiplexer DLLs, Digital Frequency Synthesizer, Phase control Constant-coefficient multipliers in LUTs 18x18 multipliers in Virtex-II,

The synthesizer cannot do all your homework

© 2000 XIII
All Rights R

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

Intelligent pin assignment

prevents routing congestion and poor performance

Natural structure:

Data flows horizontally, Control flows vertically Vertical adders and counters, carry going upwards

Pick the best I/O standard, observe banking rules

Place & route tool should not do all your homework

© 2000 Xillinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the

Design Synchronously, Use Global Clocks

- Up to 16 Global Clocks are available
 - Very low skew on these clock nets
- DLL eliminates clock distribution delay
 - Inside the chip, or even on the pc-board
- Do not gate the clock, use CE instead
 - But you may need clock gating for lowest power
 - Virtex-II has glitch-free clock gate and clock mux
- Use Carry for adders, counters and comparators
 - Superior speed, less logic, forces vertical orientation
- Use predefined cores
 - They have been tested and are guaranteed to work at speed

DesignCon2001 – 21

© 2000 Xilinx, Inc. All Rights Reserved

language and the same based on the same standard without the

Use Global Buffers to Reduce Clock Skew

- Global buffers are connected to dedicated routing
 - Global clock network is balanced to minimize skew
- All Xilinx FPGAs have global buffers
 - XC4000 and Spartan have 8
 - Virtex and Spartan-II have 4
 - Virtex-II has 16 BUFGs with glitch-free input mux
- You can always use a BUFG symbol and the software will choose an appropriate buffer type
 - All major synthesis tools can infer global buffers onto clock signals that come from off-chip

© 2000 XIlinx, Inc.

All Rights Reserved

DesignCon2001 – 22

XILINX*

Why Use Timing Constraints?

- The implementation tools do NOT try to find the placement and routing that achieves the fastest speed
 - they just try to meet your performance expectations
- YOU must communicate your expectations
 - through Timing Constraints
- Timing Constraints improve performance
 - by placing logic closer together and shortening the routing

Timing constraints are the best high-level tool to achieve guaranteed performance

DesignCon2001 - 23

© 2000 Xilinx, Inc.

More About Timing Constraints

- Timing constraints define your performance objectives
 - Tight timing constraints increases compile time
 - Unrealistic constraints causes the Flow Engine to stop
 - Logic Level Timing Report tells whether constraints are realistic
- After implemention,
 - review the Post Layout Timing Report to determine if performance objectives were met
- If your constraints were not met,
 - use the Timing Analyzer to determine the cause

XILINX* DesignCon2001 – 24

Transmission Lines

- Long traces are transmission lines, they can ring
 - "transmission line" if round trip > transition time
 - "lumped-capacitance" if round trip < transition time
- Signal delay on a pc-board:
 - 140 to 180 ps per inch (50 to 70 ps per cm)
- Avoid reflection by terminating the line
 - either series termination at the source or parallel termination at the destination
- Longest trace that is a lumped-capacitance:
 - 3 inches max for a 1-ns transition time (7.5 cm)
 - 6 inches max for a 2-ns transition time (15 cm)

XILINX* DesignCon2001 - 26

Ev	olu/	tion		
	1965	1980	1995	2010 (?)
Max Clock Rate (MHz)	1	10	100	1000
Min IC Geometry (μ)	-	5	0.5	0.05
Number of IC Metal Layers	1	2	3	10
PC Board Trace Width (μ)	2000	500	100	25
Number of Board Layers	1-2	2-4	4-8	8-16
Every 5 years: System speed doubles	, IC ged	ometry sl	hrinks 5	0%
Every 7-8 years: PC-boar	d min t	race widt	th shrin	ks 50%
	2000 Xilinx, Inc. Rights Reserved	nsmitted without the		XILINX*

Designing for Signal Integrity

- Devices need good Vcc bypassing
 - Bypass capacitor is the only source of dynamic current
- Output driver needs IBIS models
 - http://www.xilinx.com/support/troubleshoot/htm_index/sw_ibis.htm
- User needs understanding of transmission line effects
 - Characteristic impedance, reflections, dV/dt
 - series termination, parallel termination,
- Model the pc-board with HyperLynx
 - Multi-Layer with undisturbed ground/power planes
 - Controlled-impedance signal lines (50 to 75 Ohms)
- Website:
 - http://www.xilinx.com/support/techxclusives/ CircuitBoard-techX6.htm

© 2000 Xilinx, Inc. All Rights Reserved

DesignCon2001 - 29

No part of this document may be reproduced or transmitted without the

Signal Integrity Tools

- IBIS models
 - http://www.xilinx.com/support/troubleshoot/htm_index/sw_ibis.htm
- HyperLynx
- Fast oscilloscope and fast probes
 - —Beware of slow scopes measuring **1** ns rise time:
 - A 1 GHz scope with a 1 GHz probe displays 1.2 ns rise time
 - A **250 MHz** scope and probe displays: **3.0 ns** rise time
- Measure eye patterns
 - Use LFSR to generate pseudo-random sequence
- Spectrum analyzer
 - Measure the effect of decoupling capacitors, etc.
- Website:
 - http://www.xilinx.com/support/techxclusives/signals-techX5.htm

© 2000 Xilinx, Inc. All Rights Reserved

DesignCon2001 - 30

No part of this document may be reproduced or transmitted without th

Power Supply Decoupling

- CMOS current is dynamic
 - Icc current spike on every active clock edge
- Peak current can be 5x the average current
 - Instantaneous current peaks can only be supplied by decoupling capacitors
- Use one 0.1 uF ceramic chip capacitor per Vcc pin
 - Low L and R are more important than high C
 - Double up for lower L and R if necessary
 - Use direct vias to the supply planes, extremely close to the power-supply pins
 - On-chip plus package capacitance is ~0.01µF

© 2000 Xilinx, Inc.
All Rights Reserved

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education.

Tricks of the Trade

- Reduce the output strength
 - LVTTL and LVCMOS offer 2, 4, 6, 8, 12, 16, and 24 mA
- Use SLOW attribute where available
 - Increases transition time
 - especially when driving transmission lines
- Explore different I/O standards
 - Different supply voltages, input thresholds
 - Unidirectional, bidirectional, bus-oriented, differential
- Reduce fan-out and load capacitance
- Add virtual ground to alleviate SSO problems
 - Ground output pin inside and outside, give it max strength

DesignCon2001 – 33

ocument may be reproduced or transmitted without the

Testing for Performance and Reliability

- Manipulate circuit speed for testing purposes:
 - Hot and low Vcc = slow operation
 - Cold and high Vcc = fast operation
- If it fails hot: insufficient speed
 - Use a faster speed grade
 - Modify the design, add pipelining
- If it fails cold: signal integrity and hold time issues
 - Look for clock reflections
 - Look for excessive internal clock delays
 - Look for decoding spikes driving clocks
 - Look for "dirty asynchronous tricks"

© 2000 XII

All Rights F

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

Model and Measure

- Model device, package, pc-board
 - Avoids pc-board re-spin
- Measure performance and noise margin
 - Avoids field disasters
- Do not panic:
 - It's only 1 and 0, High and Low that count
 - Noise immunity takes care of the rest
- References:
 - Classes: see www.hyperlynx.com, then go to TRAINING
 - Book: Johnson & Graham High-Speed Digital Design
- Website:

DesignCon2001 - 35

— www.xilinx.com/support/techxclusives/techX-home.htm

30 Xllinx, Inc., hithis Reserved

XILINX*

Designing for Low Power

© 2000 Xilinx, Inc.

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Educati

Designing for Low Power Consumption

- To extend battery life
- To reduce chip temperature and cooling requirements
 - Tjmax = 125 degr.C (150 degre.C in ceramic)
 - Delays increase 0.35% / degr.C
 above the guaranteed 85 degr.C junction temperature
- Use the free Xilinx Power Estimator
 - http://www.xilinx.com/cgi-bin/powerweb.pl

Power is proportional to CV²f Minimize all three!

DesignCon2001 - 37

© 2000 Xilinx, Inc. All Rights Reserve

No part of this document may be reproduced or transmitted without the

Designing for Low Power

- Clock Power + I/O Power + Logic Power
- Clock Power
 - Minimize # of high-speed clock nets
 - Use DLLs for phase-aligned sub-clocks
 - CE does not reduce clock power
- I/O power
 - Avoid wasted current in input buffers
 - Use fast, full-swing input signals
 - Use output registers to avoid output glitches

DesignCon2001 - 38

© 2000 Xilinx, In

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

Low Logic Power

- Control Vcc tightly
 - Power is proportional to Vcc²
- Minimize logic transitions and glitches
- Optimize counters:
 - Gray and Johnson are best
 - Binary counters double the power
 - Linear Feedback Shift Register are even worse
- Minimize internal node capacitance
 - Use aggressive timespecs
 - Design for the highest speed possible, even if not needed
 - This assures lowest interconnect capacitance and provides the lowest power at the lower clock frequency

© 2000 Xilinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the

- Remote Die Sensor
 - Specially designed to be used with the maxim MAX1617
 - Simple 2-pin interface with no calibration required
 - Provides two channels
 - FPGA die temp reported from -40 to +125 degr.C (+/- 3 degr.C)
 - Programmable over-temperature & under-temp. alarms
 - Originally intended for the Pentium II

Precise thermal management is now easy

© 2000 Xlinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the express written permission of the Effective of Xlinx Customer Education.

Asynchronous Issues

© 2000 Xilinx, Inc

No part of this document may be reproduced or transmitted without th

Understanding Asynchronous Design Issues

- Most systems operate synchronously inside
 - But asynchronous inputs are a fact of life
- Occasionally, an asynchronous input will cause a flip-flop to go metastable
 - This is a rare, but unavoidable, probabilistic event
- Solution:
 - Faster flip-flops recover faster
 - Double-synchronization reduces probability

Awareness and understanding are crucial

© 2000 Xllinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the

• Caused by asynchronous data input - Violates set-up time requirement - Usually gets synchronized in the flip-flop without problem • But if data changes within a tiny set-up time window - Then the flip-flop can go metastable - Resulting in unpredictable delay to reach stable 1 or 0 • The 0 vs. 1 uncertainty is irrelevant - The slightest timing change would give a correct 1 or 0 • The unpredictable delay is the problem - It can violate set-up times in the system, causing erratic operation or even crashes

Mean Time Between Failure

- Measure MTBF = f (extra delay)
 - Assume a given clock and data rate
- MTBF is exponential function of delta t
 - Slope determined by gain-bandwidth product
- Modern CMOS resolves extremely fast
 - But modern system have little time slack
- The problem is as unavoidable as death and taxes
 - but probability can be reduced by design

© 2000 Xilinx, Inc.
All Rights Reserved

No part of this document may be reproduced or transmitted without the

Moving Data Across Asynchronous Clock Boundaries

- Worst-case timing happens, sooner or later
- Murphy does not sleep!
- Never use parallel flip-flops to synchronize an asynchronous input signal
 - Always synchronize at a single point
- Don't try to synchronize parallel data
 - Use the methods described on the following slides
 - The problem is data corruption, not metastability
- Use cascaded stages to combat metastability
- Website:
 - http://www.isdmag.com/editorial/2000/design0003.html

DesignCon2001 – 54

All Rights Reserved

No part of this document may be represented or transmitted without the express written permission of the Director of Xilin: Customer Education.

Moving Parallel Data with Asynchronous Handshake

- Transmitter: Data available raises Ready, sets Flag
 - Receiver scans F, accepts parallel data, raises Acknowledge
- Acknowledge sets flip-flop, which resets Flag
 - Benign race condition between flip-flops
- Both sides must observe and obey the Flag

DesignCon2001 – 55

**Rights Reserved

**No part of this document may be reproduced or transmitted without the first of th

Moving Parallel Data without Handshake

- If Rx is much faster than Tx:
- Double-buffer the Data and compare
 - If both buffers are identical: good data
 - If both are not identical: wait
- Identity detector can also be transition detector

DesignCon2001 – 56

All Rights Reserved

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education.

Moving Data at Full Speed

- 200 MHz asynchronous FIFO in Virtex-II
 - 16K deep, n bits wide
 - tc
 - 512 deep, 36n bits wide
- Uses n BlockRAMs for data storage
- Only eight to eleven CLBs for control

See new app note in March 2001

© 2000 Xilinx, Inc.

All Rights Reserved

No part of this document may be expreduced or transmitted without the express written permission of the Director of Xilinx Contower Education.

Moving Data at Full Speed

- 200 MHz asynchronous FIFO in Virtex
 - -4K deep, n bits wide
 - <u></u> to
 - 512 deep, 8n bits wide
- Uses n BlockRAMs for data storage
- Only 12 to 16 CLBs for control

See new app note in March 2001

DesignCon2001 - 59

© 2000 Xilinx, Inc. All Rights Reserve

All Rights Reserved

Asynchronous FIFOs

- Parameters: width, depth, clock frequency
- Data path = dual-ported BlockRAM
- Control = 2 addresses + Full, Empty
- Synchronous control is very simple:
 - Two counters + trivial state machines
- Asynchronous control is very tricky
 - Asynchronous addresses must control FULL and EMPTY

Many (most?) FIFOs are asynchronous

© 2000 Xilinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the

Full and Empty Control

Identity-compare write and read addresses

— identical addresses mean either Full or Empty

Two problems:

- Comparing two asynchronously changing binary addresses will cause glitches
- Distinguish between Full and Empty
 - both are indicated by address identity

© 2000 Xillinx, Inc.

All Rights Reserved

DesignCon2001 – 61

No part of this document may be reproduced or transmitted without the state of the st

Gray-Coded Addresses

- Only one bit per address changes any time
 - no glitches from the identity comparator
- Implementation:
 - Build binary counter
 - Generate XOR of two adjacent D-inputs
 - Feed these XORs to a register = Gray code
 - MSB binary = MSB Gray
- Advantage:
 - Very fast and easily expandable, binary as a bonus
 - Takes advantage of the fast carry structure

No pipeline delay, but twice the binary counter cost

DesignCon2001 – 63

document may be reproduced or transmitted without the

Separate Full from Empty

- Divide address space into 4 quadrants, defined by the counter MSBs
 - This works in binary as well as in Gray
- Monitor the quadrant relationship of the write and read address counters
- Set a flag to distinguish between potentially going Full or Empty
 - include this in the address identity comparator

© 2000 Xilinx, Inc.

All Rights Reserved

No part of this document may be reproduced an insumited without the express writing entermined on the Processor Silins Consumer Education.

Synchronize to the Proper Clock

- FULL must be synchronous to write clock
 - Read is not concerned with fullness
- EMPTY must be synchronous to read clock
- Leading edges are naturally synchronous:
 - Full is the result of a write clock
 - Empty is the result of a read clock

Trailing edges are caused by the other clock

© 2000 Xilinx, Inc.

All Rights Reserved

DesignCon2001 – 65

No part of this document may be repreduced or transmitted without the

Synchronizing the Trailing Edges Direction Addresses Undentity Comparator Write Clock • Combinatorial FULL is the result of a write. — Use it to asynchronously preset a flip-flop. — Use it also as D-input, clocked by the write clock. This synchronizes both edges to the write clock. Regists Reserved. PesignCon2001 - 66

Do the Same with EMPTY

- EMPTY can share the identity decoder
 - Then individually gated by Direction
- You can also put the binary outputs to good use:
 - they can provide "dipstick" indication:
 - Subtract, but beware of glitches.

DesignCon2001 – 67

© 2000 Xilinx, Inc

nCon2001 – 67

Asynchronous FIFO in Virtex

- 180 MHz asynchronous operation
 - -4K deep, 1n bits wide
 - -2048 deep, 2n bits wide
 - 1024 deep, 4n bits wide
 - 512 deep, 8n bits wide
- Uses n BlockRAMs plus 16 to 20 CLBs
 - BlockRAMs for data storage
 - CLBs for address counters, direction detection,
 EMPTY and FULL detection across asynchronous boundary

DesignCon2001 – 68

© 2000 Xilinx, Ir

No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education

Asynchronous FIFO in Virtex-II

- 200 MHz asynchronous operation
 - 16K deep, n bits wide
 - -8K deep, 2n bits wide
 - 4K deep, 4n bits wide
 - -2048 deep, 9n bits wide
 - 1024 deep, 18n bits wide
 - 512 deep, 36n bits wide
- Uses n BlockRAMs plus 8 to 11 CLBs
 - BlockRAMs for data storage
 - CLBs for address counters, direction detection,
 EMPTY and FULL detection across asynchronous boundary

© 2000 Xillinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the

Asynchronous Clock MUXing Clock A Clock B This circuit waits for the present clock to go Low Output then stays low until the new clock is Low Guaranteed to switch glitch-free, no runt pulses http://www.xilinx.com/xcell/xl24/xl24_20.pdf

- Each global clock buffer is a mux
 - -can switch between 2 clock sources
 - configured for rising or falling edge
- Can also do clock gating (enable)

Dangerous stuff, but these circuits do it safely

© 2000 Xilinx, Inc.
All Rights Reserved

art may be reproduced or transmitted without the

Conclusions

- Asynchronous data transfer is dangerous
 - but not if you understand the issues and know how to design around them
- Clock gating is unhealthy

DesignCon2001 - 71

- but not if you use smart circuits
- Metastabilty can hurt very badly
 - but only if inside a very tight timing budget

Modern CMOS resolves very fast (within a few ns)

© 2000 Kilinx, Inc.

All Rights Reserved

No part of this document may be reproduced or transmitted without the

List of Good URLs

Xilinx:

- www.xilinx.com
- www.xilinx.com/support/sitemap.htm
 - www.xilinx.com/products/virtex/handbook/index.htm
 - www.xilinx.com/support/techxclusives/techX-home.htm
 - www.xilinx.com/support/troubleshoot/psolvers.htm

General FPGA-oriented Websites:

- -www.fpga-faq.com
- —www.optimagic.com

Newsgroup: comp.arch.fpga

All datasheets: www.datasheetlocator.com

Search Engine (personal preference): www.google.com

DesignCon2001 - 79

All Rights Reserved

No part of this document may be reproduced or transmitted without the

Beyond Bigger, Faster, Cheaper

On-chip RAM
Efficient Arithmetic
Intelligent Clock Management
Multi-standard I/O, Built-In Termination

FPGAs have evolved from glue logic to cost-effective system platforms

© 2000 Xilinx, Inc.

No part of this document may be reproduced or transmitted without th

