
Slide 1

TechOnLine
Learn to build the latest
MicroBlaze 32-Bit Soft Processor
System in Just Minutes

Slide 2

2

Agenda
• What is MicroBlaze 4.00?
• New features available in Xilinx Platform Studio (XPS)

7.1i tools
• Learn how to build a virtual MicroBlaze system in

minutes
– Use XPS base system build wizard to build a custom virtual

hardware platform
– Use the Eclipse based Platform Studio SDK tools to compile,

debug, and profile a software application
– Compare performance of a floating point FIR filter application

as we change the available features in the MicroBlaze
processor

So today, we're going to talk
about MicroBlaze 4.0 and
exactly what it is. We'll also be
talking about some of the new
features available from Xilinx
Platform Studio, also known --
we'll refer to that as "XPS 7.1"
recently shipped.
 We'll also learn how to
develop a virtual platform for
MicroBlaze in just a couple of
minutes. We'll do this in about
45 minutes. As a matter of fact,
you could probably do this at
your desk in about 15 minutes;
it's actually quite a simple
system. And we'll go through the
various steps to do that. We'll be
using XPS to actually define and
build the system, which is Xilinx
Platform Studio.
 The results of a
secondary tool, an Eclipse-
Based Platform Studio SDK.
We'll be using that actually to do
a lot of our compiling and
debugging and analyzing our
software.
 And at the end, we'll
actually use that tool to compare
the performance of a couple of
different implementations of our

design, where we trade off some
of the opportunities to add
additional hardware to design
and improve the performance of
our software.

Slide 3

3

Custom Processing On FPGA

• Xilinx Embedded Solutions — Get the exact processor you want
– 8 bit or 32 bit
– Hard or soft
– PicoBlaze (8-bit), MicroBlaze (32-bit) , PowerPC 405 (32-bit)
– Use only the peripherals and configurations you want
– Avoid obsolescence

• MicroBlaze — Custom Processing Made Easy
– Ready to use, prebuilt configuration options
– Performance when you need it — match applications’ compute needs

• Introducing MicroBlaze v4.00
– Answering the demand for floating-point support
– Ease of use — common development tasks improved
– More compute performance for growing application sizes

 There are number of
processors available from Xilinx.
We'll be talking about MicroBlaze
today, which is a 32-Bit Soft
Core Processor. However, there
are a number of other
processors as well. We have a
Power PC Hard Core, PowerPC
405 available in our Virtex
families. There's also an 8-bit
Microcontroller “PicoBlaze”
available; the point here is that
you could choose a processor
tailored to the type of application
you might be running.
 The difference between a
soft processor and a hard
processor, we might want to
point out for those not familiar
with our FPGAs, is a hard
processor is actually
implemented in the FPGA at a
transistor level. It's just like
something you would buy off the
shelf at your local electronics or
store. However, a soft core is
actually an IP block, a real
design in an HDL that you would
implement in the available
resources of an FPGA. Our soft
cores consist of MicroBlaze and
PicoBlaze. PowerPC is our hard

core.
 MicroBlaze, is a ready-to-
use, out-of-the-box soft core
implementation. One of the
advantages of soft-core designs
is that they are very
configurable. In other words,
you do not have to incorporate
every feature that's available.
So if you're not using a particular
feature, you can actually disable
it, and it won't actually be
included in your design;
therefore it will not utilize any of
the resources in your device. So
you can actually scale the
implementation to your
application or custom-tailor your
processor.
 MicroBlaze 4.0 actually
builds on the three previous
versions, all based on the same
instruction set. And we'll be
talking a little bit about some of
the new floating-point features
that have been added to this
device to add capability for
customers utilizing floating-point
units. It also gives you the
advantage of being able to
actually implement a reference
design that might have been a
floating-point reference, include
that, and actually then do a
fixed-point implementation and
actually be able to compare the
results of your floating-point
reference and your fixed-point
running simultaneously on the
same processor.

Slide 4

4

MicroBlaze Architecture

• MicroBlaze 32-bit RISC soft core processor can be
implemented in all Xilinx Virtex and Spartan FPGA families

So we want to take a look at the
MicroBlaze architecture, you'll
see it's a traditional hardware
architecture. We do have a
number of interfaces available.
This is one of the very flexible
features of MicroBlaze. You do
have what's called an on-chip,
peripheral bus, or an OPB bus.
This is a core-connect IBM
standard bus. This gives us the
capability to connect a wide
variety of available IP blocks and
peripherals out there on the
market and also available from
Xilinx to that bus. It also gives
us the capability of connecting
directly to a PowerPC. Some of
our devices have PowerPC in
them. You could then also then
slave MicroBlaze off of an OPB
bus, for example, and have your
PowerPC maybe being a master
on that system.
 Some additional
capabilities available: You'll see
a Fast Simplex link (FSL) on the
right side. This is a new
interface. It's a FIFO-base
interface, and it is there
specifically to allow users to
define custom pieces of
hardware that might assist in a
particular application. We have
reference designs you might
have seen previously, or even
look at on our Web site, the
IDCT or FFT applications using
this interface. Any kind of DSP,
bit-extraction, packet-processing
types of algorithms that might
run efficiently on a standard
processor, you can actually
define some custom hardware
and bolt it directly to the
processor via the FSL port. It is

a very low-latency, high-speed
interface.
 Another interface that's
now available is our Xilinx Cache
Link (XCL) interface, both for
data and instruction. As we'll
learn, if you take a look again at
the Web site, this is a new way
of connecting a high-speed
memory interface It’s an efficient
port for DMA support.
 So, again, the point being
here is there's quite a number of
opportunities to connect to this
device. It just depends on what
kind of a system you might be
architecting and what kind of
performance you might need.

Slide 5

5

MicroBlaze v4.00 Highlights
• Backward compatible with MicroBlaze v3.00
• New features

– Floating-point unit (FPU)
• IEEE754-compatible, single-precision floating point
• FP instructions part of ISA
• Fully supported by compiler, tools, and instruction-set simulator (ISS)

– Pattern-compare instructions for optimized comparisons
• Three new compare instructions
• Augments the rich set of branch and compare instructions

– Configurable hardware multiplier
• Cost-minded customers can disable inclusion to save gates

– Enhanced debug logic for faster download
– Higher maximum clock frequency
– Fewer cycles per instruction (CPI)

Let’s talk about some of the new
features for MicroBlaze. One of
the newest features for
MicroBlaze is the floating-point
unit. It is an IEEE754-
compatible, single-precision
floating point unit. We also
added to the instruction set the
necessary instructions to utilize
that floating-point unit.
 There is also a new
pattern-compare instruction
which, basically, augments some
of the existing pattern-matching
OP codes that are available.
We've also made the hardware
multiplier, that has been
available, a configurable option;
so include, or disable that from
your design if you do not need a
hardware multiplier -- again,
saving FPGA resources.
 There has been an
enhancement to the debug
interface module, which now
allows us to actually have
complete access to the core
pipeline, We've also done some

floor-planning and brought up
the overall maximum frequency
and we've also added some new
instructions that actually,
reduced the number of cycles
per instruction.

Slide 6

6

MicroBlaze Array of
Configurable Features

• Floating-Point Unit
– IEEE-754 compatible
– Single precision

• Hardware Exception Support
– Unaligned access
– Illegal instruction
– Data bus error
– Instruction bus error
– Divide-by-zero
– Floating-point exceptions

• Fast Simplex Link Co-Processor Interface
– Direct access to the general purpose registers for hardware acceleration
– Up to 8 dedicated 32-bit input ports
– Up to 8 dedicated 32-bit output ports

• Instruction and Data Caches
– Uses on-chip block RAM primitives
– Configurable size 2kB - 64kB
– Configurable cacheable range
– Direct mapped write-through operation
– Caches over OPB (1 word cache line) or CacheLink (4 word cache line)

If you take a look at some of the
existing features, you can see
there is a broad range of
configurable options. Not only is
a floating-point unit something
we can include or not include,
but everything from hardware-
exception support and also
individual types of exceptions.
Whether you want to trap illegal
instructions or a bus error, a
divide-by-zero error, these can
be individually included, or not
included, in your design.
 You have new Fast
Simplex Link. There are up to 8-
bi-directional ports available
there, so if you're architecting
some hardware, you can have
eight additional instruction units
added to your processor and a
fast high-/low-latency interface.
These FSL link can also operate
as uni-directional links as well.
So if you happen to be sampling
data or just outputting something
to another processor or device
on the board, they can operate
independently at 16 individual
channels.
 We've got a configurable
cache size -- again, up to 64-

kilobytes. Now you can
configure your cache sizes,
whether they're mapped directly
or as a Write through; again, a
wide variety of opportunities,
again, to configure this core.

Slide 7

7

MicroBlaze Configurable
Features Continued

• System Interface
– Different combinations of OPB, LMB, XCL and FSL for flexible system design

• Barrel Shifter
– 2 cycle operation

• Hardware Integer Divide
• Hardware Multiply

– 3 cycle operation
• Debug Logic

– JTAG control via a debug support core
– Up to 8 hardware break points
– Up to 4 read address watch points
– Up to 4 write address watch points

• Instruction Set Extensions
– Pattern Compare Instructions
– Machine Status Register Set and Clear

• Interrupt Signaling
– Edge or level
– Active high or low

From the system interface, we've
talked some about some of the
buses that are available,
basically four: local-memory bus,
OPB bus, the XCL bus and FSL.
There is a 2-cycle barrel shifter
available. There is also a
hardware divide capability
included -- all these being
optional.
 Again, we can read down
the list here. There are quite a
few configurable features
available.

Slide 8

8

Xilinx Platform Studio (XPS)
7.1i

• XPS enables the creation of the hardware for our
CPU and peripherals as well as the software that
run on the system

• New support for the generation of virtual system
models using the Virtual Platform Generator

• Xilinx Platform Studio SDK now includes a new
graphical profiling capability

• Support for the new Virtex-4 FPGA family.
• Introduces a new peripheral import wizard

If you want to develop for a Xilinx
microprocessor, you will need
Xilinx Platform Studio. Xilinx
Platform Studio actually is a
union of a number of different
tools and we'll break that down in
a moment.
Some of the new features of
Xilinx Platform Studio is the
capability to generate a virtual
platform, with the Virtual
Platform Generator. So as you
architect a system, you're no
longer have to prototype on a
hardware development board
somewhere at your desk, or
even have to go through the flow

of developing that hardware.
With Virtual Platform Generator,
you can now generate a
software model of your system
and then compile, profile,
execute software, on that model.
 The Xilinx Platform Studio
SDK, or Software Developer Kit,
also has some new features for
graphical profiling that we'll take
a look at as well.
 7.1 also adds support for
the latest generation of the Virtex
family, the Virtex-4 family, and
also introduces some new
peripheral import wizards.
These are, actually, quite
remarkable in that you can now
define your own hardware and
using an import wizard, create
wrappers around that hardware.
That would then create the bus
interface for the variety of
different buses we have. We
won't actually be running that
today but I encourage you to
take a look and download the
software. It's a very useful
feature.

Slide 9

9

HW Development Flow

Specify Processor,
Bus & Peripherals

Automatic Hardware
Platform Generation

Xilinx FPGA Implementation
Flow

HW Configuration

Bitstream

Build Software Project

Debug

SW Development Flow

Automatic Software
BSP/Library Generation

Software Compilation

SW Configuration

Executable

MicroBlaze/
PPC

UART

Arbi ter

GPIO

Download to FPGAGDB /
XMD

XPS Tools Flow

Virtual
System
Model

Virtual
System
Model

XMD – Xilinx Microprocessor Debug

So lets take a look at what Xilinx
Platform Studio can do for you:
It's actually running two different
traditional flows. Unlike your
discrete processor, that you buy
off the shelf, you can choose the
peripherals you want in your
system. We're actually creating a
custom processor here and
we're implementing it in an
FPGA.
 So the first thing we're
going to have to do here is
define what features of the
processor we'd like to implement
and, also attach the various
peripherals to the processor

buses that we would like in our
system.
 XPS has to help us define
a system architecture. You also
have, on the right-hand side of
this diagram, a full suite of tools
for implementing an FPGA.
Running HDL synthesis,
mapping to an architecture,
place-and-route tools -- all the
traditional tools for a hardware-
implementation system are also
encapsulated under Xilinx
Platform Studio.
 On the left-hand side of
this diagram, you can see the
traditional software flow. So,
obviously, if we're developing
software, we need a compiler
and linker to generate an
executable and we need debug
tools. And Xilinx Platform Studio
will encapsulate that as well.
 Xilinx Platform Studio
Eclipse-Based SDK will do that
as well, and we'll be looking at
the latter in the presentation.

Slide 10

10

Learn How to Build a
MicroBlaze System

• Use XPS base system build wizard to build a
custom virtual hardware platform.

• Use the Eclipse based Platform Studio SDK tools
to compile, debug, and profile a software
application

• Compare performance of a floating point FIR filter
application as we change the available features in
the MicroBlaze processor

So let’s walk through the process
of creating a MicroBlaze System
with XPS.

Slide 11

11

BRAM
Local Memory

Bus

32-Bit RISC Core

Ar
bi

te
r OPB

On-Chip Peripheral Bus

UART

Virtual UART
Terminal

System we will build

Now, if we want to build a
system, we have to decide what
we're going to build. For, today,
we've got a limited amount of
time, so we're going to build a
very simple system. We're going
to instantiate MicroBlaze. We're
going to give it a local memory,
and we're also going to
instantiate a UART or an RS232
or giving us a terminal to view
printf() results out of our software
program.
And, in this case, what might
have been running on hardware
is a UART connected to a hyper-
terminal on our Windows system
through a UART cable. We are
going to connect directly to a
UART virtual terminal. One of
the nice things in the tool system
is they will recognize when you
have an I/O module within your
device and give you access ,via
a virtual model, to those
inputs/outputs and terminals.

Slide 12

12

HW Development Flow

Specify Processor,
Bus & Peripherals

Automatic Hardware
Platform Generation

Xilinx FPGA Implementation
Flow

HW Configuration

Bitstream

Build Software Project

Debug

SW Development Flow

Automatic Software
BSP/Library Generation

Software Compilation

SW Configuration

Executable

MicroBlaze/
PPC

UART

Arbi ter

GPIO

Download to FPGAGDB /
XMD

XPS creates a CPU system

Virtual
System
Model

Virtual
System
Model

XMD – Xilinx Microprocessor Debug

So if we go back to our diagram,
we're going to implement the first
three steps on the right-hand
panel.
 We're going to specify our
processor and interfaces, and
we're going to configure the
hardware peripherals.
Then and we're going to
generate virtual models for all
the necessary pieces.

Slide 13

13

Console WindowConsole Window

Edit WindowEdit Window
System

And
Applications

Window

System
And

Applications
Window

The screen you're looking at is
Xilinx Platform Studio. On the
right side, you have an edit
window for the various text files
that you'll be viewing. It's HTML-
capable and it does color-context
highlighting for various file
formats.
You have a console window
along the bottom. This will allow
you to view all of the various
tools being launched behind the
scenes and the results from
those tools -- and all your status
and warning messages would be
visible there.
 On the left-hand panel,
we've actually got two tabs.
These are our "system" and
"application window." When a
system tab is highlighted, you're
actually looking at the hardware
architecture that you've created,
and all the various peripherals
and the processor. When the
application tab is selected, you're
looking at your C-source code
and more of a software view of
the world.
 Today, we'll actually be
building a system in this Tool;
however, when we get to the
applications side, we're going to
move to the Xilinx Platform
Studio SDK Tool System.

Slide 14

14

Choose to create a
new design

Choose to create a
new design

File>New>ProjectFile>New>Project

So, from this tool, all we need to
do is start building a project.
And Step 1 would be to go to the
File Menu and just choose
"File>New>Project" and we get
an immediate window that will
ask us, do we want to create a
brand new design. We'll click
that radio button for this option
and select “Next”

Slide 15

15

Create a new
custom board
Create a new
custom board

In the next window we have an
opportunity here to target an
existing development board.
And one of the nice features of
the System Builder is that it is
completely aware of all of the
available Xilinx development
board vendors, all of our
partners, and the list of boards
available will show up in the
upper tabs of this menu.
So I can choose a particular
board, it would understand all of
the I/O capabilities, all of the
functions supported on that and,
also, all of the device pin
assignments. It, basically,
allows you to build a complete
board. For any of you that have
ever had to bring up a board, it's
not a trivial matter. This
basically makes it a couple of
click-box options and you have a
working board.
We're actually going to choose
the second option today. We're
going to create something
custom. Since we're actually
building a virtual model, there is
no need to have hardware
involved. So we're just going to
bypass that step and move

forward.
Choose Create new custom
board and select “Next”

Slide 16

16

The next tab brings up an option
to choose a processor and also
a device and family architecture.
In this case, the architecture
doesn't particularly matter since
we're going to do a virtual model
of this system. However, we do
have a Virtex-4 targeted. You'll
notice, with Virtex-4 being
targeted, we have the option of
two different processors. There
is a hard-core PowerPC in these
devices -- sometimes, more than
one. We can also implement
MicroBlaze as well in this
designs. We could easily have a
multi-processor system here, but
this gives us a starting point with
MicroBlaze. So we choose
MicroBlaze for this system.
Select “Next”

Slide 17

17

Our next window is going to ask
us to configure our processor.
At this point, if we're building a
board, we would input some
information about our frequency
and how we'd like our resets
implemented -- some of the
hardware details of a real board.
And, again, these would come
up with default settings for you.
If you were targeting a particular
board, then you would have,
then, the option to change those
options.
The important thing here is,
we're actually going to use an
on-chip debugging module, and
we're also going to change our
default local memory size up to
64K, so we can run just about
any of our test applications here.
And, again, all we have to go
through is "Next" on our menu
system.

Slide 18

18

Then we get to a tab that allows
us to add some additional
devices to our system. By
clicking the button in the upper
right-hand side, you'd be able to
add a device to your system.
And, in this case, we want to add
a UART, so we choose from our
drop-down list -- you can see
there's a variety of things
available on the list here. Simply
selecting these, in turn, adds
them to your system,
automatically generates memory
maps and wires up all the
necessary system components
to make these things active in
your system. Again, you don't
have to get into editing any
individual wires; the system
takes care of that for you.
 So we choose our UART

and move forward.

Slide 19

19

Then we get to a tab that allows
us to add some additional
devices to our system. By
clicking the button in the upper
right-hand side, you'd be able to
add a device to your system.
And, in this case, we want to add
a UART, so we choose from our
drop-down list -- you can see
there are a variety of things
available on the list here. Simply
selecting these adds them to
your system, automatically
generating memory maps and
wiring up all the necessary
system components to make
these peripheral active in your
system. Again, you don't have to
get into editing any individual
wires; the system takes care of
that for you.
 So we choose our UART
and move forward.

Slide 20

20

We, then, get an opportunity to
configure the UART; again,
parity, baud-rate and, again, we'll
accept the default here; we can
choose any range of baud rates
up to 115K. You can opt to use
interrupts, if your system needs
them.
We won’t be using interrupts so
we leave this option unchecked.
Let’s move on by selecting
“Next”

Slide 21

21

We then come to another tab
that asks us if we want to add an
additional peripheral to the
system. This is the only
peripheral we're adding, so we're
going to move forward.
Select “Next”

Slide 22

22

We, then, get asked, where we
want the standard-in and
standard-out information from
our C-application to go. The
main reason we added a UART
is so that we had a terminal here
to view printf() output in our
system. So we're going to ask
that the standard-in/standard-out
be sent to the RS232 port here.
And, again, once that's
configured, we move forward.

Slide 23

23

We are next asked where would
we actually like our instructions
and our data stored, how do we
want to organize our memory.
Since we're only utilizing a local
memory, at this point, we'll have
our instructions in the instruction
side, local memory and data in
the data-side local memory; and,
again, our stack would also be in
the data side local memory.
 If we add and external memory
interface to our system, we
would be given and option to
place our programs sections in
external memory
We chose “next” to continue.

Slide 24

24

Address Map is
automatically

generated for all
peripherals

Address Map is
automatically

generated for all
peripherals

On the next panel, you'll see the
system has been created and
you get a list of the peripherals
and also their memory-mapped
addresses.
So you can see here, we have a
couple of local memory
interfaces. We also then have
our UART, and you can see the
addresses at which these
peripherals are located.
These address maps are
automatically generated;
however, they are editable, and
over-writeable, once we go back
to the tool system. So if you
don't like those particular
settings, you can change them.
You also have the options to lock
some address assignments and
have the tools automatically
generate the addresses for those
peripherals that remained
unlocked.
We chose generate to build our
system.

Slide 25

25

And, then, when we finish, we
accept all of those and we write
out the necessary files to start
building our system, and you can
view the list of files here.
There's quite a number of things
being created – thinks like,
drivers, libraries, system
definition files, address maps,
linker scripts and the hardware
HDL files
Again, all of this stuff is done
behind the scenes for you. You
don't have to be aware of the
details at this point.

Slide 26

26

The System panel now contains
all the components we

requested for our system

The System panel now contains
all the components we

requested for our system

A HTML page links all the
relevant documents into one
page. A quick click and you

have tutorials, examples, and
user guides.

A HTML page links all the
relevant documents into one
page. A quick click and you
have tutorials, examples, and

user guides.

So now we go back to the
platform system widow, Xilinx
Platform Studio System Window,
and you can see there's quite a
number of things have been
added to that left-hand panel
here. Some of the things to note
are the MicroBlaze CPU has
been instantiated. You'll see
also a MicroBlaze OPB bus
interface.
You can see the differences in
the icons there between buses
and components. You have local
memory controllers for data and
instruction memory. You have
your RS232 port. You even
have a DCM, which is a digital
clock management system
available in the Virtex family.
So, the tools happen to know
that that feature is available
within the tool system and
automatically instantiated that
component for us, so we could
go in and modify that as needed.
 On the right-hand side, in
the Edit window, you'll actually
see the -- it's an HTML window
and each of these are links to,
each of these text buses are

links to the Document System.
So if you have any questions on
where to go from here, you can
look at these various steps and
click on those links and it will
take you to the appropriate
Documentation Sections that will
describe how to process those
sections. So, again, a nice time-
saving feature.
Now, some of the options we
have here is we can actually go
in and modify some of our
software settings. So simply
selecting "MicroBlaze" with a
right click would bring up a menu
that would allow quite a number
of different things. We can
actually view the documentation
specifically for that core. So,
again, right-clicking on any of our
peripheral objects allows us to
go straight into the
documentation system.

Slide 27

27

In this case, we're actually going
to take a look at the software
platform settings.
So we right click on the
MicroBlaze CPU instance and
choose “Software Platform
Settings”

Slide 28

28

There are quite a number of
options available here again.
We're going to accept most of
the defaults, but if you take a
look at the upper half of the
panel that comes up, you can
see all of our peripherals and the
drivers associated with each.
 At any point, if we would
like to change the drivers or add
our own, we can go into these
menus and point the peripherals
to "New Drivers" or "Customized
Drivers" or just different versions
of drivers, if we happen to want
to rev. backwards for a particular
reason.
 On the bottom half of the
panel, you'll also see there are
quite a number of libraries
available. Everything from a
networking support to a light-
weight IP block, fat file systems -
- all of these things are available,
simply at a click of a button.
They would then be linked into
your system so that as the
compilers are building you
application, you would have
access to all these features.
 On the right-hand, bottom
side, you can also see that we
can even target a stand-alone
OS, a simple Xilinx kernel, or
even something as complex [sic]
as a uC-Linux implementation
are available at a click of a
button.
We’ll leave these settings as
they are and select “Cancel”

Slide 29

29

XPS generates a Virtual System
Model Specify Processor,

Bus & Peripherals

Automatic Hardware
Platform Generation

Xilinx FPGA Implementation
Flow

HW Configuration

Bitstream

Build Software Project

Debug

Automatic Software
BSP/Library Generation

Software Compilation

SW Configuration

Executable

MicroBlaze/
PPC

UART

Arbi ter

GPIO

Download to FPGAGDB /
XMD

Virtual
System
Model

Virtual
System
Model

HW Development FlowSW Development Flow

XMD – Xilinx Microprocessor Debug

So now we've actually defined a
system architecture. What we
need to do now is actually
generate a virtual platform
software model and also
generate the libraries for that
system. So let see how we do
that.

Slide 30

30

And, again, to do that, we select
from the Tools Menu and we
choose the "Generate Virtual
Platform" option and that will,
then, kick off the Virtual Platform
Generator that would then take a
look at all the various
components in our system and
generate C-models for them.

Slide 31

31

XPS generates drivers and
libraries

HW Development Flow

Specify Processor,
Bus & Peripherals

Automatic Hardware
Platform Generation

Xilinx FPGA Implementation
Flow

HW Configuration

Bitstream

Build Software Project

Debug

SW Development Flow

Automatic Software
BSP/Library Generation

Software Compilation

SW Configuration

Executable

MicroBlaze/
PPC

UART

Arbi ter

GPIO

Download to FPGAGDB /
XMD

Virtual
System
Model

Virtual
System
Model

XMD – Xilinx Microprocessor Debug

Now once we have the model for
our system implementation,
there is one more step. We
have generate all the necessary
drivers for the peripherals that
we installed and we also have to
generate the libraries that we've
selected.

Slide 32

32

And to do that, again, we go
back to the Platform Studio Tool
and we, again, choose from the
Tools Menu, and our first option
is a "generate libraries and
BSPs."
One nice thing about this tool is
that it is completely make-file-
driven. This entire flow is
encapsulated in a make-file, so,
at any given point, you can
simply select the output you
need and XPS will launch only
those tools needed to complete
your request.
For example, if I actually want to
generate a hardware bitstream
and download it to an FPGA, I
can simply select the
"Download" option and the tools
will, via the make-file,
understand that all the various
sources may not have been
processed yet, then go back
and, actually, fire up all the
required tools to generate all of
the individual components -- all
the way down to generating and
downloading a bitstream. So, at
any point, if we added or
changed things, the make-file
system automatically
regenerates the necessary files,
so we don't have to go back and
build everything from scratch at
each, each time we change
things. This is a very, very nice
time-saving feature.

Slide 33

33

XPS generates drivers and
libraries

HW Development Flow

Specify Processor,
Bus & Peripherals

Automatic Hardware
Platform Generation

Xilinx FPGA Implementation
Flow

HW Configuration

Bitstream

Build Software Project

Debug

SW Development Flow

Automatic Software
BSP/Library Generation

Software Compilation

SW Configuration

Executable

MicroBlaze/
PPC

UART

Arbi ter

GPIO

Download to FPGAGDB /
XMD

Virtual
System
Model

Virtual
System
Model

XMD – Xilinx Microprocessor Debug

OK, at this point, we now have
the libraries and the virtual
model generated.

Slide 34

34

Learn How to Build a
MicroBlaze System

• Use XPS base system build wizard to build a
custom virtual hardware platform.

• Use the Eclipse based Platform Studio SDK tools
to compile, debug, and profile a software
application

• Compare performance of a floating point FIR filter
application as we change the available features in
the MicroBlaze processor

So now we move on to the next
step. We now have specified our
hardware processor system.
We've got a virtual model and
we've got the software libraries
generated. So now we're going
to move off into the Eclipse-
based Xilinx Platform Studio
SDK Tools where we're going to
start setting up a project and
start compiling and profiling this
application.

Slide 35

35

SDK manages Applications

HW Development Flow

Specify Processor,
Bus & Peripherals

Automatic Hardware
Platform Generation

Xilinx FPGA Implementation
Flow

HW Configuration

Bitstream

Build Software Project

Debug

SW Development Flow

Automatic Software
BSP/Library Generation

Software Compilation

SW Configuration

Executable

MicroBlaze/
PPC

UART

Arbi ter

GPIO

Download to FPGAGDB /
XMD

Virtual
System
Model

Virtual
System
Model

XMD – Xilinx Microprocessor Debug

So if we go back again to our
diagram, the various tasks we're
going to be performing are here
on the left-hand side, mostly the
software-related tasks.
So we're going to generate a
project, set up our software and
that would then create a tool
chain and, then, we'll generate
an executable from that.

Slide 36

36

Launch Platform
Studio SDK

Launch Platform
Studio SDK

Edit C or HDL
sources in the edit

window

Edit C or HDL
sources in the edit

window

We can launch Xilinx Platform
Studio SDK from within XPS.
Simply select the Tools ->
Launch Platform Studio SDK.
We also have an example here,
on the right-hand side, of our
Edit window. Whether you're
editing C or HDL, again, you can
see that everything's color-
highlighted for you.

Slide 37

37

Now, we're looking at Eclipse.
And to begin in Eclipse, we have
to create a software project.
Eclipse is a very unique tool and
powerful tool in that it has the
capability of multiple
perspectives. So, the tool can
take on a number of different
“looks”, if you will.
You have a perspective for
managing C Projects, you have
a perspective for profiling, you
can also have perspectives for
various runs and also a
debugger view. So, the tool can
take on the look and feel of
familiar applications, and it
allows us to instantiate the Xilinx
tool system underneath this nice
interface.
So, to create a project, we're
going to go: File -> New Project

Slide 38

38

We are going to choose to have
what's called a "Managed
Makefile System." You have the
option if you're very familiar with
make-files and you have your
own preferences for how those
are constructed. You can
manage those manually; that
would be the second option.
For those of us like myself who
are more of a hardware-oriented
person -- I don't necessarily
understand make-files
tremendously well -- we'll have
those things managed for us. So
the Tool will create the makefile
and manage it for us as we go
through the project changes.
Select “Next”

Slide 39

39

To start a project, we have to
point back to the platform we just
created. We have an underlying
hardware architecture and
software models that we've just
created; so we have to point our
project back to that platform, so
that everything can be built on
that platform.
The way we do that is through
our "New Project" Menu here
where we simply just give it a
path back to the system.xmp file
which, is created by Xilinx
Platform Studio, the Xilinx
Microprocessor Description File.
And, once you choose that file
the tools know which processor
you selected, and how your
processor system is configured.
Select the “Next” button?

Slide 40

40

The next thing we do is give the
software project a name. In this
case, we're going to give it the
name "fir_SW“
We select “Next”

Slide 41

41

By default, you get three
different configurations options
available when you launch, a
debug configuration, a release
configuration and a profile
configuration. Configurations,
you might think of as just a
recipe for building your
executable, so these may be the
three different ways that we build
an executable. We'll see a little
bit more about how we might use
that feature later.
Select “Next”

Slide 42

42

Now we get an opportunity to
add some additional features
which we're not going to do at
this point, and we will go directly
to our application.
Select “Finish”

Slide 43

43

Now we want to add some C
source code to our project., so
we're going to import into this
project now.
To do that, we choose "File ->
Import."

Slide 44

44

 This brings up an import menu,
and we can choose to import
from a variety of places. Eclipse
happens to be a completely
CVS-capable tool set, so we
could pull things out of a working
CVS system. We could pull it
from a ZIP file.
 In our case, we're actually just
going to pull it from the hard
drive, so we're going to choose
"File System.“
Select “Next”

Slide 45

45

And once we have that done, we
just supply a path to where our
source code is and the tools will
automatically recognize any file
that happened to be, you know,
source files. By simply check-
boxing the file that we would like
included, we, then, import those
into the project.
Check of the three source files
and select “Finish”

Slide 46

46

So now we have a C-Project in
Eclipse, or a Xilinx Platform
Studio SDK. On the left-hand
panel, you can see the C++
Project perspective; the tab is
highlighted at the top. You also
have a navigator tab on the left;
that's another perspective for
that window; it allows you to do
file management.
This left panel is your C-Project.
And you'll notice that there are
folders, one called "Debug,", one
for each of our various
configurations. Debug happens
to be the only active
configuration at this point; so
that's where we would find our
executable.
In the center panel, we have our
Edit window and C-program with
color-coded keywords and, on
the right-hand panel, we have all
of our function calls that we link
to with a simple click. And, at
the bottom, we have our console
window.
You can see that the project was
automatically compiled and an
ELF file was created.

Slide 47

47

SDK is also a Debugger

HW Development Flow

Specify Processor,
Bus & Peripherals

Automatic Hardware
Platform Generation

Xilinx FPGA Implementation
Flow

HW Configuration

Bitstream

Build Software Project

Debug

SW Development Flow

Automatic Software
BSP/Library Generation

Software Compilation

SW Configuration

Executable

MicroBlaze/
PPC

UART

Arbi ter

GPIO

Download to FPGAGDB /
XMD

Virtual
System
Model

Virtual
System
Model

XMD – Xilinx Microprocessor Debug

OK. So now we have a software
project built. The next thing we
want to be able to do is -- we've
just generated an executable --
we'd actually like to be able to
run that executable. We can
either do a run or we can
actually do debug session. In
this case, we're just going to step
through, into the debugger and
take a look at what that might
look like.

Slide 48

48

The first thing we need to do is
set up a new configuration for
launching the debug session.
Select Run > Debug from the
main menu to bring up the
Create, Manage, and Run
configuration window.

In this window, we have an
option of selecting "New" to
create a new configuration, and
we can have multiple debug
configurations, each targeting
different boards or even
targeting our virtual model. I'm
basically telling the tool where
my executable is, and that's
done through the C application
box -- you can see I'm pointing to
the ELF file for this project -- in
the debug folder.

Slide 49

49

Select DebugSelect Debug
Select Virtual

Platform Target
Select Virtual

Platform Target

If I click the center tab, the XMD
target connection -- "XMD"
happens to be the Xilinx
Microprocessor Debugger
interface -- and you can see that
I can connect to a number of
different targets.
 I can actually connect to a
debug board that I might have
sitting next to my PC. I can also
connect to this virtual platform
model, we are going to connect
to a virtual platform target; so I
choose that as my target option.
This, then, will launch the
debugger and have it connect
via a socket to a software model.
To begin our debug session
select "Debug" and move
forward.

Slide 50

50 Virtual Platform Terminal for UARTVirtual Platform Terminal for UART

Debug
Controls
Debug

Controls

This is the perspective for the
debugger. Again, we mentioned
that the perspective changes
depending on what your task is
within the tool. We happen to be
in the debugging perspective
and in the upper-left window,
you'll see above that window a
variety of different debug
options. I can run, I can stop, I
can single-step, I can step into
and out of functions -- again, all
of the normal things I would
expect from a debugger. These
are standard features within
Eclipse.
On the right-hand panel, we can
see all of our variables, we can
change tabs to breakpoints, we
can look at memory contents
here. Since we don't have a live
tool, we won't be stepping
through all of these options.
What we wanted to make
available was that the debug
perspective is something you
can use and you can single-step
through and implement your
code.
 In the bottom part of the
panel, you can see actually the
Xilinx Platform Studio Virtual
UART terminal popped up and
since we're single-stepping
through this code here, as we
get to each individual line, you
can see the printf‘() statements
that have been dumped to our
terminal window.

Slide 51

51

Note library calls to
floating point functions

Note library calls to
floating point functions

Selecting a line in the
Disassembly window
automatically highlights the
corresponding line in the C
source file and visa versa.
Highlighted in the left panel we
can see the core arithmetic loop
function that implements our We
can see that this small loop of
code make calls to floating point
library functions mulsf3 and
addsf3. These functions are
large and consume a large part
of the CPU time in the FIR
function call as we will see in the
following section on profiling.

Slide 52

52

Execute a run to here commandExecute a run to here command

By Selecting the “return 0;” line
in the left C source window we
can then right click our mouse
and choose to run the program
to this line.
This will run our program to the
end so we can see our results.

Slide 53

53

Virtual Platform RS232 Terminal

Any time a UART is included in a virtual platform model a virtual
terminal window is created

Any time a UART is included in a virtual platform model a virtual
terminal window is created

We can see the virtual terminal
now displays the input and
output data for our filter.

Slide 54

54

Does the Data Look Correct?

• We paste the data in
MS Excel and graph.

• Input is a sign wave
with noise
superimposed.

• Output looks like a
clean sign wave.

• Looks like this filter is
functioning correctly!

Cutting and pasting this data
from the terminal window into an
Excel spreadsheet lets us
quickly se our results graphically.
Indeed, everything looks correct.

Slide 55

55

Learn How to Build a
MicroBlaze System

• Use XPS base system build wizard to build a
custom virtual hardware platform.

• Use the Eclipse based Platform Studio SDK tools
to compile, debug, and profile a software
application

• Compare performance of a floating point FIR filter
application as we change the available features in
the MicroBlaze processor

Next lets look at how we might
improve the performance of our
FIR filter by enabling some extra
features in our MicroBlaze CPU
core.

Slide 56

56

We begin my creating a new run
configuration by selecting the run
option from the ‘Run’ menu.
(Run > Run)
Clicking on the new button we
can give this new configuration a
new name ‘fir_sw’
Our project name will still be
fir_sw and our application target
is Debug/fir_sw.elf
Select the XMD Target
Connection tab and enable
profiling by check the two boxes
found there.
Select ‘Run’

Slide 57

57

As the application runs profiling
data is accumulated and
displayed upon completion of the
run.
The profiling data is displayed in
two panels. A graphical panel is
on the left and a spreadsheet
version is on the right. Each
panel has multiple tabs so we
can view the data in a
hierarchical fashion or a flat
format.
Note the “time taken” column in
the Flat Profile View tab on the
right panel. Over 50% of the
CPU time is spent calling floating
point libraries from the standard
C library set. These libraries are
not small. We can also see this
graphically on the left panel.

Slide 58

58

The majority of our CPU cycles are spent
calling C math library routines! How can

we minimize these calls?

The majority of our CPU cycles are spent
calling C math library routines! How can

we minimize these calls?

The important thing to see here
are the functions taking the
majority of the time for the CPU
are these function calls to our
floating-point library. How can
avoid calling floating point
libraries?
If our processor had a floating
point unit it would be able to do
these computations natively,
thus avoiding library calls.
We can easily see here the 5
most time consuming functions
are all library calls.

Slide 59

59

Main() calls these
5 functions

Main() calls these
5 functions

If we look at the hierarchical view
of the spreadsheet panel we can
see that each function is listed
with function it calls grouped
together.
Here we can see the
fir_double_z() function takes
94.10 percent of our CPU time
and __mulsf3() consumes 57
percent of the time in
fir_double_z().
A nice feature of this view is that
the far right column contains
hyperlinks to sections of the
document pertaining to each
function. This helps up quickly
find the data that matters to us.

Slide 60

60

Main() runs for 62msMain() runs for 62msfir_double_z()
runs for 457us
fir_double_z()
runs for 457us

Note Main() takes 62 ms to run
here and fir_double_z takes
457us. This is without a FPU
unit.
We’ll compare these numbers to
our new profile after making
some modifications to the CPU.

Slide 61

61

Look for functions that are call often and
Consider inlining these functions

Look for functions that are call often and
Consider inlining these functions

Functions that are called most
often are candidates for inlining.
While they may not account for a
large number of CPU cycles,
they may cause unneeded stack
overhead.
The Call Graph tab gives us this
data instantly.

Slide 62

62

We can also see the total time
spent in a function in
microseconds reported as well.
This would help us decide which
function to optimize first.
These could be a candidate for a
hardware assist engine attached
to the processor. This would
offload this function to hardware
freeing up needed CPU cycles.

Slide 63

63

Note the total CPU
cycles needed to

complete this
simulation.

Note the total CPU
cycles needed to

complete this
simulation.

Note that we have no
Floating Point HW

calls.

Note that we have no
Floating Point HW

calls.

If we type ‘stats’ in the console
window we get the statistics from
our profile.
In this case, it's taking about 15
million cycles, and you'll also
note below that the processor is
not making any calls to the
floating point unit.
This confirms that we don't have
a floating-point unit included in
our processor.

Slide 64

64

In XPS we can change the
architecture of the
MicroBlaze CPU by

changing its parameters.

In XPS we can change the
architecture of the
MicroBlaze CPU by

changing its parameters.

Now, at this point, I've got two
options to add a floating point
unit to this design.
Number one, I can go back to
the Xilinx Platform Studio
System and simply bring up the
Add/Edit Core dialog as seen
here.
I can change the parameters on
MicroBlaze. And you can see in
this window here, there's a
number of options on the right-
hand side and if we look at the
left-hand side, we can see the
actual parameters that we might
be overriding or changing. So
we can accept the defaults or we
can change them. By default the
C_USE_FPU parameter was ‘0’.
We’ll can change this to a ‘1’ and
recompile the design which
would include the FPU in the
next CPU build process.
In this case, also added support
for the barrel shifter, divider,
hardware multiplier and a
floating-point unit.

Slide 65

65

Changing the build options for our
Release configuration will tell the

compiler we can use our FP and MUL
instructions

Changing the build options for our
Release configuration will tell the

compiler we can use our FP and MUL
instructions

Now, in our instance, we can
take advantage of the fact that
we generated a software model
of this system and we can
realize that the ISS will model
the FPU, Barrel Shifter, and
Multiplier by simply supplying a
compiler directive.
So what we're going to do is
we're going to go and change
the properties for our build and,
in this case, we can change the
configuration we've targeted.
Previously, we were targeting
the debug configuration, now we
are targeting the “Release” build
configuration as you can see in
the upper half of this menu here.
For the “Release” configuration

we add some command-line
options for the compiler, so that
it knows that it can generate
those hardware instructions
specific to the multiplier and the
divider and also the instructions
specific to the floating-point unit.
We don't actually have to go
back and rebuild anything. This
methodology allows us to
quickly create a number of
different build configurations with
differing architectural features
included or cache size changes
and simultaneously run profiles
on many different processor
configurations which to fine tune
our processor for a given
application.

Slide 66

66

After modifying the build options for
the Release target, we can create a

new Run configuration for this target
to generate new profile statistics.

After modifying the build options for
the Release target, we can create a

new Run configuration for this target
to generate new profile statistics.

We can now create a new run
configuration like we did
previously. This time we will
label the configuration
fir_sw_release and our target will
be “Release/fir_sw.elf”
We also ensure our profiling
option is checked in the XMD
Target Connection tab.
We then select “Run” to build a
new profile.

Slide 67

67

if we, again, launch this run and
compare it to the last run, we'll
see that the overall time spent in
the various functions has
changed dramatically.
We also now see that
fir_double_z() is a bigger portion,
not the library call in that design.
So we've actually substantially
improved the performance of this
design, simply by just adding a
floating-point unit.

Slide 68

68

Note the number of
milliseconds required by
main() after adding a FPU

Note the number of
milliseconds required by
main() after adding a FPU

Now, if we look at that in the flat-
profile view and compare those
results to our previous result, we
can see that we're down to about
4.7 milliseconds for this
application from 62 milliseconds
previously. This is about a 13X
speedup for Main().
Not fir_double_z() is actually 53x
faster than or previous run.
We could further investigate how
to optimize out the calls for
__umodsi3 for more potential
improvement.
So we substantially improved the
performance of this algorithm,
simply by changing the
processor architecture ever so
slightly.

Slide 69

69

Now that we have added a FPU and a
HW multiplier to MicroBlaze the cycle
count require for this application has

dropped significantly.

Now that we have added a FPU and a
HW multiplier to MicroBlaze the cycle
count require for this application has

dropped significantly.

If we go ahead and look at the
statistics from our run, we can
then see that the overall cycles
taken before our simulation was
down to about 660,000 versus
15 million.
The other thing to note here is
also, down a little lower in the
data, is that the floating-point
adds and multiplies are now
listed as 8192. So you can see
that we do indeed have calls
going to our hardware floating-
point unit.

Slide 70

70

Performance Improvement

• Adding a Floating Point Unit, Barrel Shifter, and
HW Multiplier to this design reduced the number
of CPU cycles required by this application
– Main() results in a 13x improvement
– Fir_double_z() results in a 53x improvement

• Printf() accounts for a larger percentage of the
CPU cycles in Main() now that the fir_double_z()
function cycle count has been reduced

So if we contrast those numbers
and take a look at things, we can
see that Main sped up
substantially.
The overall application saw
about a 13x improvement but the
fir sub-function, itself, actually
saw an improvement about 53x.
You know, Main also includes a
number of their other things like
print-outs and things like that
that probably would not be
included in our final embedded
system. But, again, we can see
substantial improvement, simply
by changing the hardware
available to better suit your
software algorithm.

Slide 71

71

Hardware Emulation

• Compiling our custom processor system into an
available development board is still an option and
would provide a much faster simulation platform
for large software simulations.

• This design was originally compiled for a Virtex-4
device on a ML401 development board

At this point, we do have a
couple of other options available.
We can actually go back to
hardware emulation.
This design originally was
running on an ML 401
development board, which is a
Virtex-4-based system and a lot
of this data was originally
captured simply via a UART
terminal back to our PC.

Slide 72

72

Summary
• In 45 min. we have demonstrated:

– Defined and built a custom CPU system
– Generated and address map for the system
– Created a C compiler tool chain specific to our system
– Created all necessary drivers, libraries, and include files
– Generated a custom C model for this new system
– Setup a C project and configured multiple debug and run

sessions.
– Profiled a floating point FIR filter application on two different

configurations of MicroBlaze.
– Learned what functions are consuming most of our CPU

cycles
– Improved the performance of our function 53 times

So, in the last 45 minutes or so,
we've defined a custom system,
building a CPU system from
scratch. If I needed 5 UARTs, I
could have 5 UARTs; all of that
could have been specified in the
base system builder.
I generated an address map for
my system. All the linker scripts
that had to put things in various
memory locations were
automatically created.
 I created a custom compiler tool
chain, all my /lib and /include-
directories were automatically
generated for me. All the drivers
to the various I/O blocks that I
have specified would have been
included. We only had a couple
in this case.
 We set up a C Project.
We ran two different runs,
profiled those runs and, again,
improved the performance of an
algorithm, about 53x. And,
again, in a very short period of
time.

Slide 73

73

Summary

• In reality, this takes 10 minutes at your PC!!
• Utilizing Xilinx Platform Studio we can generate

cycle accurate software models and profile the
performance of software running on a fully custom
virtual system.

• We can quickly tune the performance of our
processor architecture and system architecture to
achieve and optimal balance of performance vs.
hardware resources.

Now, in reality, if we had been
doing this at the PC, this is about
a 10-15 minutes process. I
mean, simply to run these and
set these things up, the first time
is a very, very trivial thing to do.
The learning cycle was fairly
short. Eclipse is a very intuitive
tool as well. It sets up most of
the system automatically for us.
And the point here is we can
quickly tune the performance of
a processor to a particular
application and no longer are we
constrained in having to architect
our software for a particular CPU
platform.
 We can also go ahead and tune
the processor to an application.
Again, that's a new degree of
freedom that we've not had
before.

Slide 74

74

HW Development Flow

Specify Processor,
Bus & Peripherals

Automatic Hardware
Platform Generation

Xilinx FPGA Implementation
Flow

HW Configuration

Bitstream

Build Software Project

Debug

SW Development Flow

Automatic Software
BSP/Library Generation

Software Compilation

SW Configuration

Executable

MicroBlaze/
PPC

UART

Arbi ter

GPIO

Download to FPGAGDB /
XMD

XPS can also build your HW

Virtual
System
Model

Virtual
System
Model

XMD – Xilinx Microprocessor Debug Engine

In the end you are creating a
design in an FPGA. You have all
the freedom of custom logic in
you hands as well as a fully
capable CPU. You choose the
peripherals and tune the system
to your application.

Slide 75

75

Selecting the
Download

bitstream option
will cause the

makefile to launch
all steps in the HW

and SW flow to
build our system
an load the FPGA

The last step here would be to
actually run emulation. All I've
really shown here is a screen
shot that would show the FPGA
implementation tools. All I have
to do is go back to Xilinx
Platform Studio and click a
second button which would then
launch the entire FPGA
synthesis and bitstream
generation tool system. And,
then, I can actually download
that to a hardware platform and
go back and do Eclipse and
target a new hardware platform
instead of targeting a virtual
platform and the same tool flow
would have been used, just a
different target!

Slide 76

76

ML401 Development Board

In this example we were
ultimately targeting a Xilinx ML
401 board, which can do
everything from run Linux to
serving a web page. It s quite a
capable board. More information
can be learned about this on the
Xilinx Web site.

Slide 77

77

Spartan-3 Starter Kit

For those of you who are might
be interesting in the Spartan
family, this is a soft core so you
can target a Spartan board as
well. As we mentioned, soft
cores can target any of the
devices available from Xilinx --
either the Virtex or the Spartan
family. So this would be a low
cost, about $100 Starter Kit
board that you could use for
experiments.

Slide 78

78

MicroBlaze 4.00 Summary
• MicroBlaze Increased performance

– Up to 200 MHz operation with Virtex-4
– Extends Configuration Flexibility

• Configurable hardware multiplier
• Floating point is a selectable option

• MicroBlaze v4.00 available now
– Shipped with Xilinx Embedded Development Kit (EDK) 7.1i

• Most complete design environment for customers flexibility
– Optimized HW and SW partitioning

– EDK7.1i — $495 includes:
• Platform Studio 7.1i development tools
• Hardware and software IP support for MicroBlaze and PPC 405

– No additional licensing fee or royalties for MicroBlaze

So if we take a look at
MicroBlaze 4.0.
You’ll see we have upped the
performance of this processor,
up to 200 MHz of operation with
the Virtex-4 family. That's the
highest performance family
available from Xilinx.
We've extended our
configuration, flexibility; we can
configure hardware much more
easily. A Floating Point Unit is
available and hardware
multipliers are now optional.
 MicroBlaze 4.0 is available now
in the 7.1 EDK tool system. The
MicroBlaze core is actually part
of the development system.
When you buy a development
system, you do get a license for
MicroBlaze.
That's a one time cost of $495
and there are no additional
royalties for using this soft
processor.

Slide 79

79

Next Steps

• Get started
– Buy the Embedded Development Kit (EDK) available

at www.xilinx.com/edk
– Select a Development board that suits your

application.
– Learn more about the Xilinx MicroBlaze 32-bit RISC

processor at www.xilinx.com/microblaze

