
Chapter 6 – Latches and Flip-Flops Page 1 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

Contents

Latches and Flip-Flops ..2

6.1 Bistable Element..3
6.2 SR Latch ..4
6.3 SR Latch with Enable ..6
6.4 D Latch ..7
6.5 D Latch with Enable ..8
6.6 Clock..9
6.7 D Flip-Flop ..10

6.7.1 * Alternative Smaller Circuit ...11
6.8 D Flip-Flop with Enable ..12
6.9 Asynchronous Inputs ...13
6.10 Description of a Flip-Flop..14

6.10.1 Characteristic Table ...14
6.10.2 Characteristic Equation..14
6.10.3 State Diagram ..15
6.10.4 Excitation Table...15

6.11 * Timing Issues..15
6.12 Designing a Car Security System—Version 2...16
6.13 VHDL for Latches and Flip-Flops...17

6.13.1 Implied Memory Element ..17
6.13.2 VHDL Code for a D Latch with Enable ..18
6.13.3 VHDL Code for a D Flip-Flop...18
6.13.4 VHDL Code for a D Flip-Flop with Enable and Asynchronous Set and Clear21

6.14 * Other Flip-Flop Types ..22
6.14.1 SR Flip-Flop ..22
6.14.2 JK Flip-Flop...23
6.14.3 T Flip-Flop...24

6.15 Summary Checklist..25
6.16 Problems ..25
Index..27

Chapter 6 – Latches and Flip-Flops Page 2 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

Chapter 6

Latches and Flip-Flops

Control
Signals

Status
Signals

MUX

'0'

Data
Inputs

Data
Outputs

Datapath

ALU

Register
ff

8

8

8

Output
LogicNext-

state
Logic

Control
Inputs

Control
Outputs

State
Memory

Register

Control Unit

ff

Chapter 6 – Latches and Flip-Flops Page 3 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

So far, we have been looking at the design of combinational circuits. We will now turn our attention to the
design of sequential circuits. Recall that the outputs of sequential circuits are dependent on not only their current
inputs (as in combinational circuits), but also on all their past inputs. Because of this necessity to remember the
history of inputs, sequential circuits must contain memory elements.

The car security system from Section 2.9 is an example of a combinational circuit. In that example, the siren is
turned on when the master switch is on and someone opens the door. If you close the door afterwards, then the siren
will turn off immediately. For a more realistic car security system, we would like the siren to remain on even if you
close the door after it was first triggered. In order for this modified system to work correctly, the siren must be
dependent on not only the master switch and the door switch but also on whether the siren is currently on or off. In
other words, this modified system is a sequential circuit that is dependent on both the current and on the past inputs
to the system.

In order to remember this history of inputs, sequential circuits must have memory elements. Memory elements,
however, are just like combinational circuits in the sense that they are made up of the same basic logic gates. What
makes them different is in the way these logic gates are connected together. In order for a circuit to “remember” its
current value, we have to connect the output of a logic gate directly or indirectly back to the input of that same gate.
We call this a feedback loop circuit, and it forms the basis for all memory elements. Combinational circuits do not
have any feedback loops.

Latches and flip-flops are the basic memory elements for storing information. Hence, they are the fundamental
building blocks for all sequential circuits. A single latch or flip-flop can store only one bit of information. This bit of
information that is stored in a latch or flip-flop is referred to as the state of the latch or flip-flop. Hence, a single
latch or flip-flop can be in either one of two states: 0 or 1. We say that a latch or a flip-flop changes state when its
content changes from a 0 to a 1 or vice versa. This state value is always available at the output. Consequently, the
content of a latch or a flip-flop is the state value, and is always equal to its output value.

The main difference between a latch and a flip-flop is that for a latch, its state or output is constantly affected by
its input as long as its enable signal is asserted. In other words, when a latch is enabled, its state changes
immediately when its input changes. When a latch is disabled, its state remains constant, thereby, remembering its
previous value. On the other hand, a flip-flop changes state only at the active edge of its enable signal, i.e., at
precisely the moment when either its enable signal rises from a 0 to a 1 (referred to as the rising edge of the signal),
or from a 1 to a 0 (the falling edge). However, after the rising or falling edge of the enable signal, and during the
time when the enable signal is at a constant 1 or 0, the flip-flop’s state remains constant even if the input changes.

In a microprocessor system, we usually want changes to occur at precisely the same moment. Hence, flip-flops
are used more often than latches, since they can all be synchronized to change only at the active edge of the enable
signal. This enable signal for the flip-flops is usually the global controlling clock signal.

Historically, there are basically four main types of flip-flops: SR, D, JK, and T. The major differences between
them are the number of inputs they have and how their contents change. Any given sequential circuit can be built
using any of these types of flip-flops (or combinations of them). However, selecting one type of flip-flop over
another type to use in a particular sequential circuit can affect the overall size of the circuit. Today, sequential
circuits are designed mainly with D flip-flops because of their ease of use. This is simply a tradeoff issue between
ease of circuit design versus circuit size. Thus, we will focus mainly on the D flip-flop. Discussions about the other
types of flip-flops can be found in Section 6.14.

In this chapter, we will look at how latches and flip-flops are designed and how they work. Since flip-flops are
at the heart of all sequential circuits, a good understanding of their design and operation is very important in the
design of microprocessors.

6.1 Bistable Element

Let us look at the inverter. If you provide the inverter input with a 1, the inverter will output a 0. If you do not
provide the inverter with an input (that is neither a 0 nor a 1), the inverter will not have a value to output. If you
want to construct a memory circuit using the inverter, you would want the inverter to continue to output the 0 even
after you remove the 1 input. In order for the inverter to continue to output a 0, you need the inverter to self-provide
its own input. In other words, you want the output to feed back the 0 to the input. However, you cannot connect the
output of the inverter directly to its input, because you will have a 0 connected to a 1 and so creating a short circuit.

Chapter 6 – Latches and Flip-Flops Page 4 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

The solution is to connect two inverters in series, as shown in Figure 6.1. This circuit is called a bistable
element, and it is the simplest memory circuit. The bistable element has two symmetrical nodes labeled Q and Q',
both of which can be viewed as either an input or an output signal. Since Q and Q' are symmetrical, we can
arbitrarily use Q as the state variable, so that the state of the circuit is the value at Q. Let us assume that Q originally
has the value 0 when power is first applied to the circuit. Since Q is the input to the bottom inverter, therefore, Q' is
a 1. A 1 going to the input of the top inverter will produce a 0 at the output Q, which is what we started off with.
Hence, the value at Q will remain at a 0 indefinitely. Similarly, if we power-up the circuit with Q = 1, we will get Q'
= 0, and again, we get a stable situation with Q remaining at a 1 indefinitely. Thus, the circuit has two stable states:
Q = 0 and Q = 1; hence, the name “bistable.”

Q

Q'
Figure 6.1 Bistable element circuit.

We say that the bistable element has memory because it can remember its state (i.e., keep the value at Q
constant) indefinitely. Unfortunately, we cannot change its state (i.e., cannot change the value at Q). We cannot just
input a different value to Q, because it will create a short circuit by connecting a 0 to a 1. For example, let us assume
that Q is currently 0. If we want to change the state, we need to set Q to a 1, but in so doing we will be connecting a
1 to a 0, thus creating a short. Another way of looking at this problem is that we can think of both Q and Q' as being
the primary outputs, which means that the circuit does not have any external inputs. Therefore, there is no way for us
to input a different value.

6.2 SR Latch

In order to change the state for the bistable element, we need to add external inputs to the circuit. The simplest
way to add extra inputs is to replace the two inverters with two NAND gates, as shown in Figure 6.2(a). This circuit is
called an SR latch. In addition to the two outputs Q and Q', there are two inputs S' and R' for set and reset,
respectively. Just like the bistable element, the SR latch can be in one of two states: a set state when Q = 1, or a reset
state when Q = 0. Following the convention, the primes in S and R denote that these inputs are active-low (i.e., a 0
asserts them, and a 1 de-asserts them).

To make the SR latch go to the set state, we simply assert the S' input by setting it to 0 (and de-asserting R'). It
doesn’t matter what the other NAND gate input is, because 0 NAND anything gives a 1, hence Q = 1, and the latch is
set. If S' remains at 0 so that Q (which is connected to one input of the bottom NAND gate) remains at 1, and if we
now de-assert R' (i.e., set R' to a 1) then the output of the bottom NAND gate will be 0, and so, Q' = 0. This situation
is shown in Figure 6.2(d) at time t0. From this current situation, if we now de-assert S' so that S' = R' = 1, the latch
will remain in the set state because Q' (the second input to the top NAND gate) is 0, which will keep Q = 1, as shown
at time t1. At time t2, we reset the latch by making R' = 0 (and S' = 1). With R' being a 0, Q' will go to a 1. At the top
NAND gate, 1 NAND 1 is 0, thus forcing Q to go to 0. If we de-assert R' next so that, again, we have S' = R' = 1, this
time the latch will remain in the reset state, as shown at time t3.

Notice the two times (at t1 and t3) when both S' and R' are de-asserted (i.e., S' = R' = 1). At t1, Q is at a 1;
whereas, at t3, Q is at a 0. Why is this so? What is different between these two times? The difference is in the value
of Q immediately before those times. The value of Q right before t1 is 1; whereas, the value of Q right before t3 is 0.
When both inputs are de-asserted, the SR latch remembers its previous state. Previous to t1, Q has the value 1, so at
t1, Q remains at a 1. Similarly, previous to t3, Q has the value 0, so at t3, Q remains at a 0.

Q

Q'

S'

R'

S' R' Q Qnext Qnext'
0 0 × 1 1
0 1 × 1 0
1 0 × 0 1
1 1 0 0 1
1 1 1 1 0

Chapter 6 – Latches and Flip-Flops Page 5 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

(a) (b)

Q

Q'

S'

R'

(c)

S'

R'

Q

Q'
t0 t1 t2 t3 t4 t5

Undefined

Undefined

t6

(d)

Figure 6.2 SR latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) sample trace.

If both S' and R' are asserted (i.e., S' = R' = 0), then both Q and Q' are equal to a 1, as shown at time t4, since 0
NAND anything gives a 1. Note that there is nothing wrong with having Q equal to Q'. It is just because we named
these two points Q and Q' that we don’t like them to be equal. However, we could have used another name say, P
instead of Q'.

If one of the input signals is de-asserted earlier than the other, the latch will end up in the state forced by the
signal that is de-asserted later, as shown at time t5. At t5, R' is de-asserted first, so the latch goes into the set state
with Q = 1, and Q' = 0.

A problem exists if both S' and R' are de-asserted at exactly the same time, as shown at time t6. Let us assume
for a moment that both gates have exactly the same delay and that the two wire connections between the output of
one gate to the input of the other gate also have exactly the same delay. Currently, both Q and Q' are at a 1. If we set
S' and R' to a 1 at exactly the same time, then both NAND gates will perform a 1 NAND 1 and will both output a 0 at
exactly the same time. The two 0’s will be fed back to the two gate inputs at exactly the same time, because the two
wire connections have the same delay. This time around, the two NAND gates will perform a 1 NAND 0 and will both
produce a 1 again at exactly the same time. This time, two 1’s will be fed back to the inputs, which again will
produce a 0 at the outputs, and so on and on. This oscillating behavior, called the critical race, will continue
indefinitely until one outpaces the other. If the two gates do not have exactly the same delay, then the situation is
similar to de-asserting one input before the other, and so, the latch will go into one state or the other. However, since
we do not know which is the faster gate, we do not know which state the latch will end up in. Thus, the latch’s next
state is undefined.

Of course, in practice, it is next to impossible to manufacture two gates and make the two connections with
precisely the same delay. In addition, both S' and R' need to be de-asserted at exactly the same time. Nevertheless, if
this circuit is used in controlling some mission-critical device, we don’t want even this slim chance to happen.

In order to avoid this non-deterministic behavior, we must make sure that the two inputs are never de-asserted at
the same time. Note that we do want the situation when both of them are de-asserted, as in times t1 and t3, so that the
circuit can remember its current content. We want to de-assert one input after de-asserting the other, but just not de-
asserting both of them at exactly the same time. In practice, it is very difficult to guarantee that these two signals are
never de-asserted at the same time, so we relax the condition slightly by not having both of them asserted together.
In other words, if one is asserted, then the other one cannot be asserted. Therefore, if both of them are never asserted
simultaneously, then they cannot be de-asserted at the same time. A minor side benefit for not having both of them
asserted together is that Q and Q' are never equal to each other. Recall that, from the names that we have given these
two nodes, we do want them to be inverses of each other.

From the above analysis, we obtain the truth table in Figure 6.2(b) for the NAND implementation of the SR latch.
In the truth table, Q and Qnext actually represent the same point in the circuit. The difference is that Q is the current
value at that point, while Qnext is the new value to be updated in the next time period. Another way of looking at it is
that Q is the input to a gate, and Qnext is the output from a gate. In other words, the signal Q goes into a gate,
propagates through the two gates, and arrives back at Q as the new signal Qnext. Figure 6.2(c) shows the logic
symbol for the SR latch.

Chapter 6 – Latches and Flip-Flops Page 6 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

The SR latch can also be implemented using NOR gates, as shown in Figure 6.3(a). The truth table for this
implementation is shown in Figure 6.3(b). From the truth table, we see that the main difference between this
implementation and the NAND implementation is that, for the NOR implementation, the S and R inputs are active-
high, so that setting S to 1 will set the latch, and setting R to 1 will reset the latch. However, just like the NAND
implementation, the latch is set when Q = 1 and reset when Q = 0. The latch remembers its previous state when S =
R = 0. When S = R = 1, both Q and Q' are 0. The logic symbol for the SR latch using NOR implementation is shown
in Figure 6.3(c).

Q

Q'

R

S

(a)

S R Q Qnext Qnext'
0 0 0 0 1
0 0 1 1 0
0 1 × 0 1
1 0 × 1 0
1 1 × 0 0

(b)

Q

Q'

S

R

(c)

Figure 6.3 SR latch: (a) circuit using NOR gates; (b) truth table; (c) logic symbol.

6.3 SR Latch with Enable

The SR latch is sensitive to its inputs all the time. In other words, Q will always change when either S or R is
asserted. It is sometimes useful to be able to disable the inputs so that asserting them will not cause the latch to
change state but to keep its current state. Of course, this is achieved by de-asserting both S and R. Hence, what we
want is just one enable signal that will de-assert both S and R. The SR latch with enable (also known as a gated SR
latch) shown in Figure 6.4(a) accomplishes this by adding two extra NAND gates to the original NAND-gate
implementation of the latch. These two new NAND gates are controlled by the enable input, E, which determines
whether the latch is enabled or disabled. When E = 1, the circuit behaves like the normal NAND implementation of
the SR latch, except that the new S and R inputs are active-high rather than active-low. When E = 0, then S' = R' = 1,
and the latch will remain in its previous state, regardless of the S and R inputs. The truth table and the logic symbol
for the SR latch with enable is shown in Figure 6.4(b) and (c), respectively.

A typical operation of the latch is shown in the sample trace in Figure 6.4(d). Between t0 and t1, E = 0, so
changing the S and R inputs do not affect the output. Between t1 and t2, E = 1, and the trace is similar to the trace of
Figure 6.2(d) except that the input signals are inverted.

Chapter 6 – Latches and Flip-Flops Page 7 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

S

R

Q

Q'

E

R'

S'

(a)

E S R Q Qnext Qnext'
0 × × 0 0 1
0 × × 1 1 0
1 0 0 0 0 1
1 0 0 1 1 0
1 0 1 × 0 1
1 1 0 × 1 0
1 1 1 × 1 1

(b)

Q

Q'

S

R
E

(c)

S

R

Q

Q'
t1

Undefined

Undefined

t2

E

t0

(d)

Figure 6.4 SR latch with enable: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) sample trace.

6.4 D Latch

Recall from Section 6.2 that the disadvantage with the SR latch is that we need to ensure that the two inputs, S
and R, are never de-asserted at exactly the same time, and we said that we can guarantee this by not having both of
them asserted. This situation is prevented in the D latch by adding an inverter between the original S' and R' inputs.
This way, S' and R' will always be inverses of each other, and so, they will never be asserted together. The circuit
using NAND gates and the inverter is shown in Figure 6.5(a). There is now only one input D (for data). When D = 0,
then S' = 1 and R' = 0, so this is similar to resetting the SR latch by making Q = 0. Similarly, when D = 1, then S' = 0
and R' = 1, and Q will be set to 1. From this observation, we see that Qnext always gets the same value as the input D
and is independent of the current value of Q. Hence, we obtain the truth table for the D latch, as shown in Figure
6.5(b).

Comparing the truth table for the D latch shown in Figure 6.5(b) with the truth table for the SR latch shown in
Figure 6.2(b), it is obvious that we have eliminated not just one, but three rows, where S' = R'. The reason for adding
the inverter to the SR-latch circuit was to eliminate the row where S' = R' = 0. However, we still need to have the
other two rows where S' = R' = 1 in order for the circuit to remember its current value. By not being able to set both
S' and R' to 1, this D-latch circuit has now lost its ability to remember. Qnext cannot remember the current value of Q,
instead, it will always follow D. The end result is like having a piece of wire where the output is the same as the
input!

Q

Q'

S'

R'D

(a)

D Q Qnext Qnext'
0 × 0 1
1 × 1 0

(b)

Q

Q'

D

(c)

Figure 6.5 D latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol.

Chapter 6 – Latches and Flip-Flops Page 8 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

6.5 D Latch with Enable

In order to make the D latch remember the current value, we need to connect Q (the current state value) back to
the input D, thus creating another feedback loop. Furthermore, we need to be able to select whether to loop Q back
to D or input a new value for D. Otherwise, like the bistable element, we will not be able to change the state of the
circuit. One way to achieve this is to use a 2-input multiplexer to select whether to feedback the current value of Q
or pass an external input back to D. The circuit for the D latch with enable (also known as a gated D latch) is
shown in Figure 6.6(a). The external input becomes the new D input, the output of the multiplexer is connected to
the original D input, and the select line of the multiplexer is the enable signal E.

When the enable signal E is asserted (E = 1), the external D input passes through the multiplexer, and so Qnext
(i.e., the output Q) follows the D input. On the other hand, when E is de-asserted (E = 0), the current value of Q
loops back as the input to the circuit, and so Qnext retains its last value independent of the D input.

When the latch is enabled, the latch is said to be open, and the path from the input D to the output Q is
transparent. In other words, Q follows D. Because of this characteristic, the D latch with enable circuit is often
referred to as a transparent latch. When the latch is disabled, it is closed, and the latch remembers its current state.
The truth table and the logic symbol for the D latch with enable are shown in Figure 6.6(b) and (c). A sample trace
for the operation of the D latch with enable is shown in Figure 6.6(d). Between t0 and t1, the latch is enabled with E
= 1, so the output Q follows the input D. Between t1 and t2, the latch is disabled, so Q remains stable even when D
changes.

An alternative way to construct the D latch with enable circuit is shown in Figure 6.7. Instead of using the 2-
input multiplexer, as shown in Figure 6.6(a), we start with the SR latch with enable circuit of Figure 6.4(a), and
connect the S and R inputs together with an inverter. The functional operations of these two circuits are identical.

Q

Q'

S'

R'
D

E

y
s

0
1

(a)

E D Q Qnext Qnext'
0 × 0 0 1
0 × 1 1 0
1 0 × 0 1
1 1 × 1 0

(b)

Q

Q'

D

E

(c)

E

D

Q

Q'
t0 t1 t2 t3

(d)

Figure 6.6 D latch with enable: (a) circuit; (b) truth table; (c) logic symbol; (d) sample trace.

Chapter 6 – Latches and Flip-Flops Page 9 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

S

R

Q

Q'

E

R'

S'D

Figure 6.7 D latch with enable circuit using four NAND gates.

6.6 Clock

Latches are known as level-sensitive because their outputs are affected by their inputs as long as they are
enabled. Their memory state can change during this entire time when the enable signal is asserted. In a computer
circuit, however, we do not want the memory state to change at various times when the enable signal is asserted.
Instead, we like to synchronize all of the state changes to happen at precisely the same moment and at regular
intervals. In order to achieve this, two things are needed: (1) a synchronizing signal, and (2) a memory circuit that is
not level-sensitive. The synchronizing signal, of course, is the clock, and the non-level-sensitive memory circuit is
the flip-flop.

The clock is simply a very regular square wave signal, as shown in Figure 6.8. We call the edge of the clock
signal when it changes from 0 to 1 the rising edge. Conversely, the falling edge of the clock is the edge when the
signal changes from 1 to 0. We will use the symbol to denote the rising edge and for the falling edge. In a
computer circuit, either the rising edge or the falling edge of the clock can be used as the synchronizing signal for
writing data into a memory element. This edge signal is referred to as the active edge of the clock. In all of our
examples, we will use the rising clock edge as the active edge. Therefore, at every rising edge, data will be clocked
or stored into the memory element.

A clock cycle is the time from one rising edge to the next rising edge or from one falling edge to the next falling
edge. The speed of the clock, measured in hertz (Hz), is the number of cycles per second. Typically, the clock speed
for a microprocessor in an embedded system runs around 20 MHz, while the microprocessor in a personal computer
runs upwards of 2 GHz and higher. A clock period is the time for one clock cycle (seconds per cycle), so it is just
the inverse of the clock speed.

The speed of the clock is determined by how fast a circuit can produce valid results. For example, a two-level
combinational circuit will have valid results at its output much sooner than, say, an ALU can. Of course, we want
the clock speed to be as fast as possible, but it can only be as fast as the slowest circuit in the entire system. We want
the clock period to be the time it takes for the slowest circuit to get its input from a memory element, operate on the
data, and then write the data back into a memory element. More will be said on this in later sections.

Figure 6.9 shows a VHDL description of a clock-divider circuit that roughly cuts a 25 MHz clock down to 1 Hz.

One Clock Cycle

Falling Edge Rising Edge
Figure 6.8 Clock signal.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Clockdiv IS PORT (
 Clk25Mhz: IN STD_LOGIC;

Chapter 6 – Latches and Flip-Flops Page 10 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

 Clk: OUT STD_LOGIC);
END Clockdiv;

ARCHITECTURE Behavior OF Clockdiv IS
 CONSTANT max: INTEGER := 25000000;
 CONSTANT half: INTEGER := max/2;
 SIGNAL count: INTEGER RANGE 0 TO max;
BEGIN
 PROCESS
 BEGIN
 WAIT UNTIL Clk25Mhz'EVENT and Clk25Mhz = '1';
 IF count < max THEN
 count <= count + 1;
 ELSE
 count <= 0;
 END IF;
 IF count < half THEN
 Clk <= '0';
 ELSE
 Clk <= '1';
 END IF;
 END PROCESS;
END Behavior;

Figure 6.9 VHDL behavioral description of a clock-divider circuit.

6.7 D Flip-Flop

Unlike the latch, a flip-flop is not level-sensitive, but rather edge-triggered. In other words, data gets stored
into a flip-flop only at the active edge of the clock. An edge-triggered D flip-flop achieves this by combining in
series a pair of D latches. Figure 6.10(a) shows a positive edge-triggered D flip-flop, where two D latches are
connected in series. A clock signal Clk is connected to the E input of the two latches: one directly, and one through
an inverter.

The first latch is called the master latch. The master latch is enabled when Clk = 0 because of the inverter, and
so QM follows the primary input D. However, the signal at QM cannot pass over to the primary output Q, because
the second latch (called the slave latch) is disabled when Clk = 0. When Clk = 1, the master latch is disabled, but the
slave latch is enabled so that the output from the master latch, QM, is transferred to the primary output Q. The slave
latch is enabled all the while that Clk = 1, but its content changes only at the rising edge of the clock, because once
Clk is 1, the master latch is disabled, and the input to the slave latch, QM, will be constant. Therefore, when Clk = 1
and the slave latch is enabled, the primary output Q will not change because the input QM is not changing.

The circuit shown in Figure 6.10(a) is called a positive edge-triggered D flip-flop because the primary output Q
on the slave latch changes only at the rising edge of the clock. If the slave latch is enabled when the clock is low
(i.e., with the inverter output connected to the E of the slave latch), then it is referred to as a negative edge-
triggered flip-flop. The circuit is also referred to as a master-slave D flip-flop because of the two D latches used in
the circuit.

Figure 6.10(b) shows the operation table for the D flip-flop. The symbol signifies the rising edge of the
clock. When Clk is either at 0 or 1, the flip-flop retains its current value (i.e., Qnext = Q). Qnext changes and follows
the primary input D only at the rising edge of the clock. The logic symbol for the positive edge-triggered D flip-flop
is shown in Figure 6.10(c). The small triangle at the clock input indicates that the circuit is triggered by the edge of
the signal, and so it is a flip-flop. Without the small triangle, the symbol would be that for a latch. If there is a circle
in front of the clock line, then the flip-flop is triggered by the falling edge of the clock, making it a negative edge-
triggered flip-flop. Figure 6.10(d) shows a sample trace for the D flip-flop. Notice that when Clk = 0, QM follows D,
and the output of the slave latch, Q, remains constant. On the other hand, when Clk = 1, Q follows QM, and the
output of the master latch, QM, remains constant.

Chapter 6 – Latches and Flip-Flops Page 11 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

D

Clk

Q

Q'

QM

Master Slave

Q

Q'

D

E

Q

Q'

D

E

(a)

Clk D Q Qnext Qnext'
0 × 0 0 1
0 × 1 1 0
1 × 0 0 1
1 × 1 1 0

 0 × 0 1
 1 × 1 0

(b)

Q

Q'

D

Clk

(c)

Clk

D

QM

Q
t1t0 t2 t3

(d)

Figure 6.10 Master-slave positive edge-triggered D flip-flop: (a) circuit using D latches; (b) operation table; (c)
logic symbol; (d) sample trace.

Figure 6.11 compares the different operations between a latch and a flip-flop. In Figure 6.11(a), we have a D
latch with enable, a positive edge-triggered D flip-flop, and a negative edge-triggered D flip-flop, all having the
same D input and controlled by the same clock signal. Figure 6.11(b) shows a sample trace of the circuit’s
operations. Notice that the gated D latch, Qa, follows the D input as long as the clock is high (between times t0 and t1
and times t2 and t3). The positive edge-triggered flip-flop, Qb, follows the D input only at the rising edge of the clock
at time t2, while the negative edge-triggered flip-flop, Qc, follows the D input only at the falling edge of the clock at
times t1 and t3.

Q

Q'

D

Clk

Q

Q'

DD

Clk

Q

Q'

D

Clk

Qa

Qb

Qc

E

(a)

Clk

D

Qa

Qb

Qc

t0 t1 t2 t3

(b)

Figure 6.11 Comparison of a gated latch, a positive edge-triggered flip-flop, and a negative edge-triggered flip-flop:
(a) circuit; (b) sample trace.

6.7.1 * Alternative Smaller Circuit

Not all master-slave flip-flops are edge-triggered. For instance, using two SR latches to construct a master-slave

Chapter 6 – Latches and Flip-Flops Page 12 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

flip-flop results in a flip-flop that is level-sensitive. Conversely, an edged-triggered D flip-flop can be constructed
using SR latches instead of the master-slave D latches.

The circuit shown in Figure 6.12 shows how a positive edge-triggered D flip-flop can be constructed using three
interconnected SR latches. The advantage of this circuit is that it uses only 6 NAND gates (26 transistors) as opposed
to 11 gates (38 transistors) for the master-slave D flip-flop shown in Figure 6.10(a). The operation of the circuit is as
follows. When Clk = 0, the outputs of gates 2 and 3 will be 1 (since 0 NAND x = 1). With n2 = n3 = 1, this will keep
the output latch (comprising of gates 5 and 6) in its current state. At the same time, n4 = D' since one input to gate 4
is n3, which is a 1 (1 NAND x = x'). Similarly, n1 = D since n2 = 1, and the other input to gate 1 is n4, which is D'
(again 1 NAND x = x').

When Clk changes to 1, n2 will be equal to D' because 1 NAND n1 = n1', and n1 = D. Similarly, n3 will be equal to
D when Clk changes to 1 because the other two inputs to gate 3 are both D'. Therefore, if Clk = 1 and D = 0, then n2
(which is equal to D') will be 1 and n3 (which is equal to D) will be 0. With n2 = 1 and n3 = 0, this will de-assert S'
and assert R', thus resetting the output latch Q to 0. On the other hand, if Clk = 1 and D = 1, then n2 (which is equal
to D') will be 0 and n3 (which is equal to D) will be 1. This will assert S' and de-assert R'; thus setting the output
latch Q to 1. So at the rising edge of the Clk signal, Q will follow D.

The setting and resetting of the output latch occurs only at the rising edge of the Clk signal, because once Clk is
at a 1 and remains at a 1, changing D will not change n2 or n3. The reason, as noted in the previous paragraph, is that
n2 and n3 are always inverses of each other. Furthermore, the following argument shows that both n2 and n3 will
remain constant even if D changes. Let us first assume that n2 is a 0. If n2 = 0, then n3 (the output of gate 3) will
always be a 1 (since 0 NAND x = 1), regardless of what n4 (the third input to gate 3) may be. Hence, if n4 (the output
of gate 4) cannot affect n3, then D (the input to gate 4) also cannot affect either n2 or n3. On the other hand, if n2 = 1,
then n3 = 0 (n3 = n2'). With a 0 from n3 going to the input of gate 4, the output of gate 4 at n4 will always be a 1 (0
NAND x = 1), regardless of what D is. With the three inputs to gate 3 being all 1’s, n3 will continue to be 0.
Therefore, as long as Clk = 1, changing D will not change n2 or n3. And if n2 and n3 remain stable, then Q will also
remain stable for the entire time that Clk is 1.

D

Clk

Q

Q'3

4

6

52

1

n3

n2

Output Latch

Reset Latch

Set Latch

R'

S'

n4

n1

(D')

(D)

(D)

(D')

Figure 6.12. Positive edge-triggered D flip-flop.

6.8 D Flip-Flop with Enable

So far, with the construction of the different memory elements, it seems like every time we add a new feature
we have also lost a feature that we need. The careful reader will have noticed that, in building the D flip-flop, we
have again lost the most important property of a memory element—it can no longer remember its current content!
At every active edge of the clock, the D flip-flop will load in a new value. So how do we get it to remember its
current value and not load in a new value?

The answer, of course, is exactly the same as what we did with the D latch, and that is by adding an enable
input, E, through a 2-input multiplexer, as shown in Figure 6.13(a). When E = 1, the primary input D signal will
pass to the D input of the flip-flop, thus updating the content of the flip-flop at the active edge. When E = 0, the

Chapter 6 – Latches and Flip-Flops Page 13 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

current content of the flip-flop at Q is passed back to the D input of the flip-flop, thus keeping its current value.
Notice that changes to the flip-flop value occur only at the active edge of the clock. Here, we are using the rising
edge as the active edge. The operation table and the logic symbol for the D flip-flop with enable is shown in Figure
6.13(b) and (c) respectively.

D

E
Clk

Q

Q'

Q

Q'

D

Clk

y
s

0
1

(a)

Clk E D Q Qnext Qnext'
0 × × 0 0 1
0 × × 1 1 0
1 × × 0 0 1
1 × × 1 1 0

 0 × 0 0 1
 0 × 1 1 0
 1 0 × 0 1
 1 1 × 1 0

(b)

Q

Q'

D

Clk

E

(c)

Figure 6.13 D flip-flop with enable: (a) circuit; (b) operation table; (c) logic symbol.

6.9 Asynchronous Inputs

Flip-flops (as we have seen so far) change states only at the rising or falling edge of a synchronizing clock
signal. Many circuits require the initialization of flip-flops to a known state that is independent of the clock signal.
Sequential circuits that change states whenever a change in input values occurs that is independent of the clock are
referred to as asynchronous sequential circuits. Synchronous sequential circuits, on the other hand, change states
only at the active edge of the clock signal. Asynchronous inputs usually are available for both flip-flops and latches,
and they are used to either set or clear the storage element’s content that is independent of the clock.

Figure 6.14(a) shows a gated D latch with asynchronous active-low Set' and Clear' inputs, and (b) is the logic
symbol for it. Figure 6.14(c) is the circuit for the D edge-triggered flip-flop with asynchronous Set' and Clear'
inputs, and (d) is the logic symbol for it. When Set' is asserted (set to 0) the content of the storage element is set to 1
immediately (i.e., without having to wait for the next rising clock edge), and when Clear' is asserted (set to 0) the
content of the storage element is set to 0 immediately.

D Q

Q'

E

R

S
Set'

Clear'

(a)

Q

Q'

D

E

Set'

Clear'

(b)

Chapter 6 – Latches and Flip-Flops Page 14 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

D

Clk

Q

Q'

Clear'

Set'

(c)

Q

Q'

D

Clk

Set'

Clear'

(d)

Figure 6.14 Storage elements with asynchronous inputs: (a) D latch with active-low set and clear; (b) logic symbol
for (a); (c) D edge-triggered flip-flop with active-low set and clear; (d) logic symbol for (c).

6.10 Description of a Flip-Flop

Combinational circuits can be described with either a truth table or a Boolean equation. For describing the
operation of a flip-flop or any sequential circuit in general, we use a characteristic table, a characteristic equation, a
state diagram, or an excitation table, as discussed in the following subsections.

6.10.1 Characteristic Table

The characteristic table specifies the functional behavior of the flip-flop. It is a simplified version of the flip-
flop’s operational table by only listing how the state changes at the active clock edge. The table has the flip-flop’s
input signal(s) and current state (Q) listed in the input columns, and the next state (Qnext) listed in the output column.
Qnext' is always assumed to be the inverse of Qnext, so it is not necessary to include this output column. The clock
signal is also not included in the table, because it is a signal that we do not want to modify. Nevertheless, the clock
signal is always assume to exist. Furthermore, since all state changes for a flip-flop (i.e., changes to Qnext) occur at
the active edge of the clock, therefore it is not necessary to list the situations from the operation table for when the
clock is at a constant value.

The characteristic table for the D flip-flop is shown in Figure 6.15(a). It has two input columns (the input signal
D, and the current state Q) and one output column for Qnext. From the operation table for the D flip-flop shown in
Figure 6.10(b), we see that there are only two rows where Qnext is affected during the rising clock edge. Hence, these
are the only two rows inserted into the characteristic table.

The characteristic table is used in the analysis of sequential circuits to answer the question of what is the next
state, Qnext, when given the current state, Q, and input signals (D in the case of the D flip-flop).

6.10.2 Characteristic Equation

The characteristic equation is simply the Boolean equation that is derived directly from the characteristic
table. Like the characteristic table, the characteristic equation specifies the flip-flop’s next state, Qnext, as a function
of its current state, Q, and input signals. The D flip-flop characteristic table has only one 1-minterm, which results in
the simple characteristic equation for the D flip-flop shown in Figure 6.15(b).

Chapter 6 – Latches and Flip-Flops Page 15 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

6.10.3 State Diagram

A state diagram is a graph with nodes and directed edges connecting the nodes, as shown in Figure 6.15(c).
The state diagram graphically portrays the operation of the flip-flop. The nodes are labeled with the states of the
flip-flop, and the directed edges are labeled with the input signals that cause the transition to go from one state of the
flip-flop to the next. Figure 6.15(c) shows the state diagram for the D flip-flop. It has two states, Q = 0 and Q = 1,
which correspond to the two values that the flip-flop can contain. The operation of the D flip-flop is such that when
it is in state 0, it will change to state 1 if the input D is a 1; otherwise, if the input D is a 0, then it will remain in state
0. Hence, there is an edge labeled D = 1 that goes from state Q = 0 to Q = 1, and a second edge labeled D = 0 that
goes from state Q = 0 back to itself. Similarly, when the flip-flop is in state 1, it will change to state 0 if the input D
is a 0; otherwise, it will remain in state 1. These two conditions correspond to the remaining two edges that go out
from state Q = 1 in the state diagram.

6.10.4 Excitation Table

The excitation table is like the mirror image of the characteristic table by exchanging the input signal
column(s) with the output (Qnext) column. The excitation table shows what the flip-flop’s inputs should be in order to
change from the flip-flop’s current state to the next state desired. In other words, the excitation table answers the
question of what the flip-flop’s inputs should be when given the current state that the flip-flop is in and the next state
that we want the flip-flop to go to. This table is used in the synthesis of sequential circuits.

Figure 6.15(d) shows the excitation table for the D flip-flop. As can be seen, this table can be obtained directly
from the state diagram. For example, using the state diagram of the D flip-flop from Figure 6.15(c), if the current
state is Q = 0 and we want the next state to be Qnext = 0, then the D input must be a 0 as shown by the label on the
edge that goes from state 0 back to itself. On the other hand, if the current state is Q = 0 and we want the next state
to be Qnext = 1, then the D input must be a 1.

D Q Qnext
0 × 0
1 × 1

(a)

Qnext = D

(b)

Q = 0 Q = 1

D = 1

D = 1

D = 0

D = 0

(c)

Q Qnext D
0 0 0
0 1 1
1 0 0
1 1 1

(d)

Figure 6.15 Description of a D flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d)
excitation table.

6.11 * Timing Issues

So far in our discussion of latches and flip-flops, we have ignored timing issues and the effects of propagation
delays. In practice, timing issues are very important in the correct design of sequential circuits. Consider again the D
latch with enable circuit from Section 6.5 and redrawn in Figure 6.16(a). Signals from the inputs require some delay
to propagate through the gates and finally to reach the outputs.

Assuming that the propagation delay for the inverter is 1 nanosecond (ns) and 2 ns for the NAND gates, the
timing trace diagram would look like Figure 6.16(b) with the signal delays taken into consideration. The arrows
denote which signal edge causes another signal edge. The number next to an arrow denotes the number of
nanoseconds in delay for the resulting signal to change.

Chapter 6 – Latches and Flip-Flops Page 16 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

At time t1, signal D drops to 0. This causes R to rise to 1 after a 1 ns delay through the inverter. The D edge also
causes S' to rise to 1, but after a delay of 2 ns through the NAND gate. After that, R' drops to 0 at 2 ns after R rises to
1. This in turn causes Q' to rise to 1 after 2 ns, followed by Q dropping to 0.

At time t2, signal E drops to 0, disabling the circuit. As a result, when D rises to 1 at time t3, both Q and Q' are
not affected.

At time t4, signal E rises to 1 and re-enables the circuit. This causes S' to drop to 0 after 2 ns. R' remains
unchanged at 1 since the two inputs to the NAND gate, E and R, are 1 and 0, respectively. With S' asserted and R' de-
asserted, the latch is set with Q rising to 1 at 2 ns after S' drops to a 0. This is followed by Q' dropping to 0 after
another 2 ns.

S

R

Q

Q'

E

R'

S'D

(a)

t1

E

D / S

R

S'

R'

Q

Q'

1
2

2

2
2

2

1 2

2

2

t2 t4t3

(b)

Figure 6.16 D latch with enable: (a) circuit; (b) timing diagram with delays.

Furthermore, for the D-latch circuit to latch in the data from input D correctly, there is a critical window of time
right before and right after the falling edge of the enable signal, E, that must be observed. Within this time frame, the
input signal, D, must not change. As shown in Figure 6.17, the time before the falling edge of E is referred to as the
setup time, tsetup, and the time after the falling edge of E is referred to as the hold time, thold. The length of these two
times is dependent on the implementation and manufacturing process and can be obtained from the component data
sheet.

E

D

tsetup thold
Figure 6.17 Setup and hold times for the gated D latch.

6.12 Car Security System—Version 2

In Section 2.9, we designed a combinational circuit for a car security system where the siren will come on when
the master switch is on and either the door switch or the vibration switch is also on. However, as soon as both the
door switch and the vibration switch are off, the siren will turn off immediately, even though the master switch is
still on. In reality, what we really want is to have the siren remain on, even after both the door and vibration switches
are off. In order to do so, we need to remember the state of the siren. In other words, for the siren to remain on, it
should be dependent not only on whether the door or the vibration switch is on, but also on the fact that the siren is
currently on.

We can use the state of a SR latch to remember the state of the siren (i.e., the output of the latch will drive the
siren). The state of the latch is driven by the conditions of the input switches. The modified circuit, as shown in
Figure 6.18, has an SR latch (in addition to its original combinational circuit) for remembering the current state of

Chapter 6 – Latches and Flip-Flops Page 17 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

the siren. The latch is set from the output of the combinational circuit. The latch’s reset is connected to the master
switch so that the siren can be turned off immediately.

A sample timing trace of the operation of this circuit is shown in Figure 6.19. At time 0, the siren is off, even
though the door switch is on, because the master switch is off. At time 300 ns, the siren is turned on by the door
switch since the master switch is also on. At time 500 ns, both the door and the vibration switches are off, but the
siren is still on because it was turned on previously. The siren is turned off by the master switch at time 600 ns.

Q
S'

R'

Siren
SD

M
V

Figure 6.18 Modified car security system circuit with memory.

Figure 6.19 Sample timing trace of the modified car security system circuit with memory.

6.13 VHDL for Latches and Flip-Flops

6.13.1 Implied Memory Element

VHDL does not have any explicit object for defining a memory element. Instead, the semantics of the language
provide for signals to be interpreted as a memory element. In other words, the memory element is declared
depending on how these signals are assigned.

Consider the VHDL code in Figure 6.20. If Enable is 1, then Q gets the value of D; otherwise, Q gets a 0. In this
code, Q is assigned a value for all possible outcomes of the test in the IF statement. With this construct, a
combinational circuit is produced.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY no_memory_element IS PORT (
 D, Enable: IN STD_LOGIC;
 Q: OUT STD_LOGIC);
END no_memory_element;

ARCHITECTURE Behavior OF no_memory_element IS
BEGIN
 PROCESS(D, Enable)
 BEGIN
 IF (Enable = '1') THEN
 Q <= D;
 ELSE

Chapter 6 – Latches and Flip-Flops Page 18 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

 Q <= '0';
 END IF;
 END PROCESS;
END Behavior;

Figure 6.20 Sample VHDL description of a combinational circuit.

If we remove the ELSE and the statement in the ELSE part, as shown in Figure 6.21, then we have a situation
where no value is assigned to Q if Enable is not 1. The key point here is that the VHDL semantics stipulate that, in
cases where the code does not specify a value of a signal, the signal should retain its current value. In other words,
the signal must remember its current value, and in order to do so, a memory element is implied.

6.13.2 VHDL Code for a D Latch with Enable

Figure 6.21 shows the VHDL code for a D latch with enable. If Enable is 1, then Q gets the value of D.
However, if Enable is not 1, the code does not specify what Q should be; therefore, Q retains its current value by
using a memory element. This code produces a latch and not a flip-flop, because Q follows D as long as Enable is 1
and not only at the active edge of the Enable signal. The process sensitivity list includes both D and Enable, because
either one of these signals can cause a change in the value of the Q output.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_latch_with_enable IS PORT (
 D, Enable: IN STD_LOGIC;
 Q: OUT STD_LOGIC);
END D_latch_with_enable;

ARCHITECTURE Behavior OF D_latch_with_enable IS
BEGIN
 PROCESS(D, Enable)
 BEGIN
 IF (Enable = '1') THEN
 Q <= D;
 END IF;
 END PROCESS;
END Behavior;

Figure 6.21 VHDL code for a D latch with enable.

6.13.3 VHDL Code for a D Flip-Flop

Figure 6.22 shows the behavioral VHDL code for a positive edge-triggered D flip-flop. The only difference here
is that Q follows D only at the rising edge of the clock, and it is specified here by the condition “Clock'EVENT AND
Clock = '1'.” The 'EVENT attribute refers to any changes in the qualifying Clock signal. Therefore, when this happens
and the resulting Clock value is a 1, we have, in effect, a condition for a positive or rising clock edge. Again, the
code does not specify what is assigned to Q when the condition in the IF statement is false, so it implies the use of a
memory element. Note also that the process sensitivity list contains only the clock signal, because it is the only
signal that can cause a change in the Q output.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_flipflop IS PORT (
 D, Clock: IN STD_LOGIC;

Chapter 6 – Latches and Flip-Flops Page 19 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

 Q: OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN
 PROCESS(Clock) -- sensitivity list is used
 BEGIN
 IF (Clock'EVENT AND Clock = '1') THEN
 Q <= D;
 END IF;
 END PROCESS;
END Behavior;

Figure 6.22 Behavioral VHDL code for a positive edge-triggered D flip-flop using an IF statement.

Another way to describe a flip-flop is to use the WAIT statement instead of the IF statement, as shown in Figure
6.23. When execution reaches the WAIT statement, it stops until the condition in the statement is true before
proceeding. The WAIT statement, when used in a process block for synthesis, must be the first statement in the
process. Note also that the process sensitivity list is omitted, because the WAIT statement implies that the sensitivity
list contains only the clock signal.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_flipflop IS PORT (
 D, Clock: IN STD_LOGIC;
 Q: OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavioral OF D_flipflop IS
BEGIN
 PROCESS -- sensitivity list is not used if WAIT is used
 BEGIN
 WAIT UNTIL Clock'EVENT AND Clock = '0'; -- negative edge triggered
 Q <= D;
 END PROCESS;
END Behavioral;

Figure 6.23 Behavioral VHDL code for a negative edge-triggered D flip-flop using a WAIT statement.

Alternatively, we can write a structural VHDL description for the positive edge-triggered D flip-flop, as shown
in Figure 6.24. This VHDL code is based on the circuit for a positive edge-triggered D flip-flop, as given in Figure
6.12.

The simulation trace for the positive edge-triggered D flip-flop is shown in Figure 6.25. In the trace, before the
first rising edge of the clock at time 100 ns, both Q and Q' (QN) are undefined because nothing has been stored in
the flip-flop yet. Immediately after this rising clock edge at 100 ns, Q gets the value of D, and QN gets the inverse.
At 200 ns, D changes to 1, but Q does not follow D immediately but is delayed until the next rising clock edge at
300 ns. At the same time, QN drops to 0. At 400 ns, when D drops to 0, Q again follows it at the next rising clock
edge at 500 ns.

-- define the operation of the 2-input NAND gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY NAND_2 IS PORT (
 I0, I1: IN STD_LOGIC;

Chapter 6 – Latches and Flip-Flops Page 20 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

 O: OUT STD_LOGIC);
END NAND_2;

ARCHITECTURE Dataflow_NAND2 OF NAND_2 IS
BEGIN
 O <= I0 NAND I1;
END Dataflow_NAND2;

-- define the structural operation of the SR latch
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY SRlatch IS PORT (
 SN, RN: IN STD_LOGIC;
 Q, QN: BUFFER STD_LOGIC);
END SRlatch;

ARCHITECTURE Structural_SRlatch OF SRlatch IS
 COMPONENT NAND_2 PORT (
 I0, I1 : IN STD_LOGIC;
 O : OUT STD_LOGIC);
 END COMPONENT;
BEGIN
 U1: NAND_2 PORT MAP (SN, QN, Q);
 U2: NAND_2 PORT MAP (Q, RN, QN);
END Structural_SRlatch;

-- define the operation of the 3-input NAND gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY NAND_3 IS PORT (
 I0, I1, I2: IN STD_LOGIC;
 O: OUT STD_LOGIC);
END NAND_3;

ARCHITECTURE Dataflow_NAND3 OF NAND_3 IS
BEGIN
 O <= NOT (I0 AND I1 AND I2);
END Dataflow_NAND3;

-- define the structural operation of the D flip-flop
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY positive_edge_triggered_D_flipflop IS PORT (
 D, Clock: IN STD_LOGIC;
 Q, QN: BUFFER STD_LOGIC);
END positive_edge_triggered_D_flipflop;

ARCHITECTURE StructuralDFF OF positive_edge_triggered_D_flipflop IS
 SIGNAL N1, N2, N3, N4: STD_LOGIC;

 COMPONENT SRlatch PORT (
 SN, RN: IN STD_LOGIC;
 Q, QN: BUFFER STD_LOGIC);

Chapter 6 – Latches and Flip-Flops Page 21 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

 END COMPONENT;
 COMPONENT NAND_2 PORT (
 I0, I1: IN STD_LOGIC;
 O: OUT STD_LOGIC);
 END COMPONENT;
 COMPONENT NAND_3 PORT (
 I0, I1, I2: IN STD_LOGIC;
 O: OUT STD_LOGIC);
 END COMPONENT;

BEGIN
 U1: SRlatch PORT MAP (N4, Clock, N1, N2); -- set latch
 U2: SRlatch PORT MAP (N2, N3, Q, QN); -- output latch
 U3: NAND_3 PORT MAP (N2, Clock, N4, N3); -- reset latch
 U4: NAND_2 PORT MAP (N3, D, N4); -- reset latch
END StructuralDFF;

Figure 6.24 Structural VHDL code for a positive edge-triggered D flip-flop.

Figure 6.25 Simulation trace for the positive edge-triggered D flip-flop.

6.13.4 VHDL Code for a D Flip-Flop with Enable and Asynchronous Set and Clear

Figure 6.26 shows the VHDL code for a positive edge-triggered D flip-flop with enable and asynchronous
active-high set and clear inputs. The two asynchronous inputs are checked independently of the clock event. When
either the Set or the Clear input is asserted with a 1 (active-high), Q is immediately set to 1 or 0, respectively,
independent of the clock. If Enable is asserted with a 1, then Q follows D at the rising edge of the clock; otherwise,
Q keeps its previous content. Figure 6.27 shows the simulation trace for this flip-flop. Notice in the trace that when
either Set or Clear is asserted (at 100 ns and 200 ns, respectively) Q changes immediately. However, when Enable is
asserted at 400 ns, Q doesn’t follow D until the next rising clock edge at 500 ns. Similarly, when D drops to 0 at 600
ns, Q doesn’t change immediately but drops at the next rising edge at 700 ns. At 800 ns, when D changes to a 1, Q
does not follow the change at the next rising edge at 900 ns, because Enable is now de-asserted.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY d_ff IS PORT (
 Clock: IN STD_LOGIC;
 Enable: IN STD_LOGIC;
 Set: IN STD_LOGIC;
 Clear: IN STD_LOGIC;
 D: IN STD_LOGIC;
 Q: OUT STD_LOGIC);
END d_ff;

ARCHITECTURE Behavioral OF d_ff IS

Chapter 6 – Latches and Flip-Flops Page 22 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

BEGIN
 PROCESS(Clock,Set,Clear)
 BEGIN
 IF (Set = '1') THEN
 Q <= '1';
 ELSIF (Clear = '1') THEN
 Q <= '0';
 ELSIF (Clock'EVENT AND Clock = '1') THEN
 IF Enable = '1' THEN
 Q <= D;
 END IF;
 END IF;
 END PROCESS;
END Behavioral;

Figure 6.26 Behavioral VHDL code for a positive edge-triggered D flip-flop with active-high enable and
asynchronous set and clear inputs.

Figure 6.27 Simulation trace for the positive edge-triggered D flip-flop with active-high enable and asynchronous
set and clear inputs.

6.14 * Other Flip-Flop Types

There are basically four main types of flip-flops: D, SR, JK, and T. The major differences in these flip-flop
types are in the number of inputs they have and how they change states. Like the D flip-flop, each type can also have
different variations, such as active-high or -low inputs, whether they change state at the rising or falling edge of the
clock signal, and whether they have any asynchronous inputs. Any given sequential circuit can be built using any of
these types of flip-flops or combinations of them. However, selecting one type of flip-flop over another type to use
in a particular circuit can affect the overall size of the circuit. Today, sequential circuits are designed primarily with
D flip-flops only because of their simple operation. Of the four flip-flop’s characteristic equations, the characteristic
equation for the D flip-flop is the simplest.

6.14.1 SR Flip-Flop

Like SR latches, SR flip-flops are useful in control applications where we want to be able to set or reset the data
bit. However, unlike SR latches, SR flip-flops change their content only at the active edge of the clock signal.
Similar to SR latches, SR flip-flops can enter an undefined state when both inputs are asserted simultaneously.
When the two inputs are de-asserted, then the next state is the same as the current state. The characteristic table,
characteristic equation, state diagram, circuit, logic symbol, and excitation table for the SR flip-flop are shown in
Figure 6.28.

The SR flip-flop truth table shown in Figure 6.28(a) is for active-high set and reset signals. Hence, the flip-flop
state, Qnext, is set to 1 when S is asserted with a 1, and Qnext is reset to 0 when R is asserted with a 1. When both S
and R are de-asserted with a 0, the flip-flop remembers its current state. From the truth table, we get the following
K-map for Qnext, which results in the characteristic equation shown in Figure 6.28(b).

Chapter 6 – Latches and Flip-Flops Page 23 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

SR
Q

0

00
1

1 1

01 11 10

1

Qnext

×

×

S

R'Q

Notice that the SR flip-flop circuit shown in Figure 6.28(d) uses the D flip-flop. The signal for asserting the D
input of the flip-flop is generated by the combinational circuit that is derived from the characteristic equation of the
SR flip-flop, namely D = Qnext = S + R'Q.

S R Q Qnext Qnext'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 × ×
1 1 1 × ×

(a)

Qnext = S + R'Q

(b)

Q = 0 Q = 1

SR = 10

SR = 00 or 10

SR = 00 or 01

SR = 01

(c)

Clk

D

Q'

Q

Clk

R
S Q

Q'

(d)

Clk

S

Q'

Q

R

(e)

Q Qnext S R
0 0 0 ×
0 1 1 0
1 0 0 1
1 1 × 0

(f)

Figure 6.28 SR flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic
symbol; (f) excitation table.

6.14.2 JK Flip-Flop

The operation of the JK flip-flop is very similar to the SR flip-flop. The J input is just like the S input in the SR
flip-flop in that, when asserted, it sets the flip-flop. Similarly, the K input is like the R input where it resets the flip-
flop when asserted. The only difference is when both inputs, J and K, are asserted. For the SR flip-flop, the next
state is undefined; whereas, for the JK flip-flop, the next state is the inverse of the current state. In other words, the
JK flip-flop toggles its state when both inputs are asserted. The characteristic table, characteristic equation, state
diagram, circuit, logic symbol, and excitation table for the JK flip-flop are shown in Figure 6.29.

Chapter 6 – Latches and Flip-Flops Page 24 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

6.14.3 T Flip-Flop

The T flip-flop has one input, T (which stands for toggle), in addition to the clock. When T is asserted (T = 1),
the flip-flop state toggles back and forth at each active edge of the clock, and when T is de-asserted, the flip-flop
keeps its current state. The characteristic table, characteristic equation, state diagram, circuit, logic symbol, and
excitation table for the T flip-flop are shown in Figure 6.30.

J K Q Qnext Qnext'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1

(a)

Qnext = K'Q + JQ'

(b)

Q = 0 Q = 1

JK = 10 or 11

JK = 00 or 10

JK = 00 or 01

JK = 01 or 11

(c)

Clk

D

Q'

QJ
K

Clk

Q

Q'

(d)

Clk

J

Q'

Q

K

(e)

Q Qnext J K
0 0 0 ×
0 1 1 ×
1 0 × 1
1 1 × 0

(f)

Figure 6.29 JK flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic
symbol; (f) excitation table.

Chapter 6 – Latches and Flip-Flops Page 25 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

T Q Qnext Qnext'
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

(a)

Qnext = TQ' + T'Q = T ⊕ Q

(b)

Q = 0 Q = 1

T = 1

T = 0

T = 0

T = 1

(c)

Clk

D

Q'

Q

Clk
T

Q'

Q

(d)

Clk

T

Q'

Q

(e)

Q Qnext T
0 0 0
0 1 1
1 0 1
1 1 0

(f)

Figure 6.30 T flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic
symbol; (f) excitation table.

6.15 Summary Checklist

 Feedback loop
 Bistable element
 Latch
 Flip-flop
 Clock

 Level-sensitive, active edge, rising/falling edge, clock cycle
 SR latch
 SR latch with enable
 D latch
 D latch with enable
 D flip-flop

 Characteristic table, characteristic equation, state diagram circuit, excitation table
 Asynchronus inputs
 VHDL implied memory element
 SR flip-flop

 Characteristic table, characteristic equation, state diagram circuit, excitation table
 JK flip-flop

 Characteristic table, characteristic equation, state diagram circuit, excitation table
 T flip-flop

 Characteristic table, characteristic equation, state diagram circuit, excitation table

6.16 Problems

1. Draw an SR latch with enable similar to that shown in Figure 6.4, but using NOR gates to implement the SR

Chapter 6 – Latches and Flip-Flops Page 26 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

latch. Derive the truth table for this circuit.

2. Draw the D latch using NOR gates

3. Draw the D latch with enable similar to the circuit in Figure 6.6(a), but use NAND gates instead of the
multiplexer.

4. Draw the master-slave negative edge-triggered D flip-flop circuit.

5. Derive the truth table for a negative edge-triggered D flip-flop.

6. Draw the circuit for an SR flip-flop using SR latches.

7. 6.7 Draw the circuit for the JK flip-flop using SR latches.

8. 6.8 Draw the circuit for the T flip-flop using a JK flip-flop.

9. 6.9 Complete the following timing diagram for the following circuit. Assume that the signal delay through the
NOR gates is 3 nanoseconds, and the delay through the NOT gate is 1 nanosecond.

Q

Q'D

D'

D

D'

Q

0 1 2 3 4 5 6Time (ns) 7 8

Q'

Chapter 6 – Latches and Flip-Flops Page 27 of 27

Digital Logic and Microprocessor Design with VHDL Copyright Enoch Hwang

Index

A

Active edge, 3
Asynchronous inputs, 13

B

Bistable element, 3

C

Characteristic equation, 14
Characteristic table, 14

D

D flip-flop, 10
with enable, 12

D latch, 7
with enable, 8

E

Edge-triggered flip flop, 10
negative, 10
positive, 10

Excitation table, 15

F

Falling edge, 3
Feedback loop, 3
Flip-flop, 3

D, 10
JK, 23
SR, 22
T, 24

G

Gated D latch, 8
Gated SR latch, 6

H

Hold time, 16

I

Implied memory element, 17

J

JK flip-flop, 22, 23

L

Latch, 3
Level sensitive, 9

M

Master-slave D flip-flop, 10

N

Negative edge-triggered flip flop, 10

P

Positive edge-triggered flip flop, 10, 12
Propagation delay, 15

R

Rising edge, 3

S

Setup time, 16
SR flip-flop, 22
SR latch, 4

with enable, 6
State, 3
State diagram, 14

T

T flip-flop, 22, 24
Timing issues, 15
Transparent latch, 8

V

VHDL
Clock' EVENT, 18
flip-flops, 17
Implied memory element, 17
latches, 17
WAIT, 19

VHDL code
D flip-flop (behavioral), 18
D flip-flop (structural), 21
D flip-flop with asynchronous inputs, 22
D latch, 18

