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As with many construction projects, it is often easier to build in a hierarchical fashion. Initially, we use the very 
basic building blocks to build slightly larger building blocks, and then from these larger building blocks, we build 
yet larger building blocks, and so on. Similarly, in constructing large digital circuits, instead of starting with the 
basic logic gates as building blocks each time, we often start with larger building blocks. Many of these larger 
building blocks are often used over and over again in different digital circuits, and therefore, are considered as 
standard components for large digital circuits. In order to reduce the design time, these standard components are 
often made available in standard libraries so that they do not have to be redesigned each time that they are needed. 
For example, many digital circuits require the addition of two numbers; therefore, an adder circuit is considered a 
standard component and is available in most standard libraries. 

Standard combinational components are combinational circuits that are available in standard libraries. These 
combinational components are used mainly in the construction of datapaths. For example, in our microprocessor 
road map, the standard combinational components are the multiplexer, ALU, comparator, and tri-state buffer. Other 
standard combinational components include adders, subtractors, decoders, encoders, shifters, rotators, and 
multipliers. Although the next-state logic and output logic circuits in the control unit are combinational circuits, they 
are not considered as standard combinational components because they are designed uniquely for a particular control 
unit to solve a specific problem and usually are never reused in another design. 

In this chapter, we will design some standard combinational components. These components will be used in 
later chapters for the building of the datapath in the microprocessor. When we use these components to build the 
datapath, we do not need to know the detailed construction of these components. Instead, we only need to know how 
these components operate, and how they connect to other components. Nevertheless, in order to see the whole 
picture, we should understand how these individual components are designed. 

4.1 Signal Naming Conventions 

So far in our discussion, we have always used the words “high” and “low” to mean 1 or 0, or “on” or “off”, 
respectively. However, this is somewhat arbitrary, and there is no reason why we can’t say a 0 is a high or a 1 is off. 
In fact, many standard off-the-shelf components use what we call negative logic where 0 is for on and 1 is for off. 
Using negative logic usually is more difficult to understand because we are used to positive logic where 1 is for on 
and 0 is for off. In all of our discussions, we will use the more natural, positive logic that we are familiar with. 

Nevertheless, in order to prevent any confusion as to whether we are using positive logic or negative logic, we 
often use the words “assert,” “de-assert,” “active-high,” and “active-low.” Regardless of whether we are using 
positive or negative logic, active-high always means that a 1 (i.e., a high) will cause the signal to be active or 
enabled and that a 0 will cause the signal to be inactive or disabled. For example, if there is an active-high signal 
called add and we want to enable it (i.e. to make it do what it is intended for, which in this case is to add something), 
then we need to set this signal line to a 1. Setting this signal to a 0 will cause this signal to be disabled or inactive. 
An active-low signal, on the other hand, means that a 0 will cause the signal to be active or enabled, and that a 1 will 
cause the signal to be inactive or disabled. So if the signal add is an active-low signal, then we need to set it to a 0 to 
make it add something. 

We also use the word “assert” to mean: to make a signal active or to enable the signal. To de-assert a signal is 
to disable the signal or to make it inactive. For example, to assert the active-high add signal line means to set the 
add signal to a 1. To de-assert an active-low line also means to set the line to a 1—since a 0 will enable the line 
(active-low)—and we want to disable (de-assert) it. 

4.2 Adder 

4.2.1 Full Adder 

To construct an adder for adding two n-bit binary numbers, X = xn-1 … x0 and Y = yn-1 … y0, we need to first 
consider the addition of a single bit slice, xi with yi, together with the carry-in bit, ci, from the previous bit position 
on the right. The result from this addition is a sum bit, si, and a carry-out bit, ci+1, for the next bit position. In other 
words, si = xi + yi + ci, and ci+1 = 1 if there is a carry from the addition to the next bit on the left. Note that the + 
operator in this equation is addition and not the logical OR. 
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For example, consider the following addition of the two 4-bit binary numbers, X = 1001 and Y = 0011. 

1 0 0 1

1 100+

0011
11

c1c2

 

The result of the addition is 1100. The addition is performed just like that for decimal numbers, except that there is a 
carry whenever the sum is either a 2 or a 3 in decimals, since 2 is 10 in binary and 3 is 11. The most significant bit in 
the 10 or the 11 is the carry-out bit. Looking at the bit slice that is highlighted in blue where x1 = 0, y1 = 1, and c1 = 
1, the addition for this bit slice is x1 + y1 + c1  = 0 + 1 + 1 = 10. Therefore, the sum bit is s1 = 0, and the carry-out bit 
is c2 = 1. 

The circuit for the addition of a single bit slice is known as a full adder (FA), and its truth table is shown in 
Figure 4.1(a). The derivation of the equations for si and ci+1 are shown in Figure 4.1(b). From these two equations, 
we get the circuit for the full adder, as shown in Figure 4.1(c). Figure 4.1(d) shows the logic symbol for it. The 
dataflow VHDL code for the full adder is shown in Figure 4.2. 

 
xi yi ci ci+1 si 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

(a) 

si = xi'yi'ci + xi'yici' + xiyi'ci' + xiyici 
 = (xi'yi + xiyi')ci' + (xi'yi' + xiyi)ci 
 = (xi ⊕ yi)ci' + (xi ⊕ yi)'ci 
 = xi ⊕ yi ⊕ ci 

ci+1 = xi'yici + xiyi'ci + xiyici' + xiyici 
 = xiyi(ci' + ci) + ci(xi'yi + xiyi') 
 = xiyi + ci(xi ⊕ yi) 

 

(b) 

xi yi

ci

ci+1

si  
(c) 

FA

xi yi

cici+1

si

 
 

(d) 

Figure 4.1 Full adder: (a) truth table; (b) equations for si and ci+1; (c) circuit; (d) logic symbol. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY fa IS PORT ( 
 Ci, Xi, Yi: IN STD_LOGIC; 
 Ci1, Si: OUT STD_LOGIC); 
END fa; 
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ARCHITECTURE Dataflow OF fa IS 
BEGIN 
 Ci1 <= (Xi AND Yi) OR (Ci AND (Xi XOR Yi)); 
 Si <= Xi XOR Yi XOR Ci; 
END Dataflow; 

Figure 4.2 Dataflow VHDL code for a 1-bit full adder.  

4.2.2 Ripple-carry Adder 

The full adder is for adding two operands that are only one bit wide. To add two operands that are, say, four bits 
wide, we connect four full adders together in series. The resulting circuit (shown in Figure 4.3) is called a ripple-
carry adder for adding two 4-bit operands. 

Since a full adder adds the three bits, xi, yi and ci, together, we need to set the first carry-in bit, c0, to 0 in order 
to perform the addition correctly. Moreover, the output signal, cout, is a 1 whenever there is an overflow in the 
addition. 

The structural VHDL code for the 4-bit ripple-carry adder is shown in Figure 4.4. Since we need to duplicate 
the full adder component four times, we can use either the PORT MAP statement four times or the FOR-
GENERATE statement, as shown in the code, to automatically generate the four components. The statement FOR k 
IN 3 DOWNTO 0 GENERATE determines how many times to repeat the PORT MAP statement that is in the body 
of the GENERATE statement and the values used for k. The vector signal Carryv is used to propagate the carry bit 
from one FA to the next. 

x1 y1

c1

s1

FA1

x2 y2

c2

s2

FA2

x3 y3

c3

s3

FA3

cout

x0 y0

c0 = 0

s0

FA0

 
Figure 4.3 Ripple-carry adder. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY Adder4 IS PORT ( 
 A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0); 
 Cout: OUT STD_LOGIC; 
 SUM: OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); 
END Adder4; 

ARCHITECTURE Structural OF Adder4 IS 
 COMPONENT FA PORT ( 
  ci, xi, yi: IN STD_LOGIC; 
  co, si: OUT STD_LOGIC); 
 END COMPONENT; 
 
 SIGNAL Carryv: STD_LOGIC_VECTOR(4 DOWNTO 0); 
 
BEGIN 
 Carryv(0) <= '0'; 
 
 Adder: FOR k IN 3 DOWNTO 0 GENERATE 
  FullAdder: FA PORT MAP (Carryv(k), A(k), B(k), Carryv(k+1), SUM(k)); 
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 END GENERATE Adder; 
 
 Cout <= Carryv(4); 
END Structural; 

Figure 4.4 VHDL code for a 4-bit ripple-carry adder using a FOR-GENERATE statement. 

4.2.3 * Carry-Lookahead Adder 

The ripple-carry adder is slow because the carry-in for each full adder is dependent on the carry-out signal from 
the previous FA. So before FAi can output valid data, it must wait for FAi–1 to have valid data. In the carry-
lookahead adder, each bit slice eliminates this dependency on the previous carry-out signal and instead uses the 
values of the two input operands, X and Y, directly to deduce the needed signals. This is possible from the following 
observations regarding the carry-out signal. For each FAi, the carry-out signal, ci+1, is set to a 1 if either one of the 
following two conditions is true: 

xi = 1 and yi = 1 

or 

(xi = 1 or yi = 1) and ci = 1 

In other words,  

ci+1 = xiyi + ci(xi + yi) (4.1) 

At first glance, this carry-out equation looks completely different from the carry-out equation deduced in Figure 
4.1(b). However, they are equivalent (see Problem P2.6(h)). 

If we let 

gi = xi yi  

and 

pi = xi  + yi 

then Equation (4.1) can be rewritten as 

ci+1 = gi + pici (4.2) 

Using Equation (4.2) for ci+1, we can recursively expand it to get the carry-out equations for any bit slice, ci, that 
is dependent only on the two input operands, X and Y, and the initial carry-in bit, c0. Using this technique, we get the 
following carry-out equations for the first four bit slices 

c1 = g0 + p0c0 (4.3) 

c2 = g1 + p1c1 
 = g1 + p1(g0 + p0c0) 
 = g1 + p1g0 + p1p0c0 (4.4) 

c3 = g2 + p2c2 
 = g2 + p2 (g1 + p1g0 + p1p0c0) 
 = g2 + p2 g1 + p2p1g0 + p2p1 p0c0 (4.5) 

c4 = g3 + p3c3 
 = g3 + p3(g2 + p2g1 + p2p1g0 + p2p1p0c0) 
 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0 (4.6) 

Using Equations (4.3) to (4.6), we obtain the circuit for generating the carry-lookahead signals for c1 to c4, as 
shown in Figure 4.5(a). Note that each equation is translated to a three-level combinational logic—one level for 
generating the gi and pi, and two levels (for the sum-of-products format) for generating the ci expression. This carry-
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lookahead circuit can be reduced even further because we want c0 to be a 0 when performing additions and this 0 
will cancel the rightmost product term in each equation. 

The full adder for the carry-lookahead adder can also be made simpler, since it is no longer required to generate 
the carry-out signal for the next bit slice. In other words, the carry-in signal for the full adder now comes from the 
new carry-lookahead circuit rather than from the carry-out signal of the previous bit slice. Thus, this full adder only 
needs to generate the sumi signal. Figure 4.5(b) shows one bit slice of the carry-lookahead adder. For an n-bit carry-
lookahead adder, we use n bit slices. These n bit slices are not connected in series as with the ripple-carry adder; 
otherwise, it defeats the purpose of having the more complicated carry-out circuit. 

y3x3 y2x2

p2g2

y1x1 y0x0

c0

c1c2c3c4

p3g3 p1g1 p0g0

 

(a) 

xi yi

Carry-
lookahead

Circuit

x0...xi-1 y0...yi-1

sumi

ci

 
 
 
 

(b) 

Figure 4.5 (a) Circuit for generating the carry-lookahead signals, c1 to c4; (b) one bit slice of the carry-lookahead 
adder. 

4.3 Two’s Complement Binary Numbers 

Before introducing subtraction circuits, we need to review how negative numbers are encoded using two’s 
complement representation. Binary encoding of numbers can be interpreted as either signed or unsigned. Unsigned 
numbers include only positive numbers and zero, whereas signed numbers include positive, negative, and zero. For 
signed numbers, the most significant bit (MSB) tells whether the number is positive or negative. If the most 
significant bit is a 1, then the number is negative; otherwise, the number is positive. The value of a positive signed 
number is obtained exactly as for unsigned numbers described in Section 2.1. For example, the value for the positive 
signed number 011010012 is just 1 × 26 + 1 × 25 + 1 × 23 + 1 × 20 = 105 in decimal format. 

However, to determine the value of a negative signed number, we need to perform a two-step process: (1) flip 
all the 1 bits to 0’s and all the 0 bits to 1’s, and (2) add a 1 to the result obtained from Step 1. The number obtained 
from applying this two-step process is evaluated as an unsigned number for its value. The negative of this resulting 
value is the value of the original negative signed number. 

Example 4.1: Finding the value for a signed number 

Given the 8-bit signed number 111010012, we know that it is a negative number because of the leading 1. To 
find out the value of this negative number, we perform the two-step process as follows. 

11101001 (original number) 
00010110 (flip bits) 
00010111 (add a 1 to the previous number) 

The value for the resulting number 00010111 is 1 × 24 + 1 × 22 + 1 × 21 + 1 × 20 = 23. Therefore, the value of the 
original number 11101001 is negative 23 (–23). ♦ 
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Example 4.2: Finding the value for a signed number 

To find the value for the 4-bit signed number 1000, we apply the two-step process to the number as follows. 

1000  (original number) 
0111  (flip bits) 
1000  (add a 1 to the previous number) 

The resulting number 1000 is exactly the same as the original number! This, however, should not confuse us if 
we follow exactly the instructions for the conversion process. We need to interpret the resulting number as an 
unsigned number to determine the value. Interpreting the resulting number 1000 as an unsigned number gives us the 
value of 8. Therefore, the original number, which is also 1000, is negative 8 (–8). ♦ 

Figure 4.6 shows the two’s complement numbers for four bits. The range goes from –8 to 7. In general, for an 
n-bit two’s complement number, the range is from –2n-1 to 2n-1 – 1. 

 
4-bit Binary Two’s Complement 

0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1000 – 8 
1001 – 7 
1010 – 6 
1011 – 5 
1100 – 4 
1101 – 3 
1110 – 2 
1111 – 1 

Figure 4.6 4-bit two’s complement numbers. 

The nice thing about using two’s complement to represent negative numbers is that when we add a number with 
the negative of the same number, the result is zero as expected. This is shown in the next example. 

Example 4.3: Adding 4-bit signed numbers 

Use 4-bit signed arithmetic to perform the following addition. 

 3 = 0011 
 + (–3) = + 1101 
 0 = 10000 

The result 10000 has five bits. But since we are using 4-bit arithmetic (that is, the two operands are 4-bits wide) 
the result must also be in 4-bits. The leading 1 in the result is, therefore, an overflow bit. By dropping the leading 
one, the remaining result 0000 is the correct answer for the problem. Although this addition resulted in an overflow 
bit, by dropping this extra bit, we obtained the correct answer. ♦ 

Example 4.4: Adding 4-bit signed numbers 

Use 4-bit signed arithmetic to perform the following addition. 
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 6 = 0110 
 + 3 = + 0011 
 9 ≠ 1001 

The result 1001 is a 9 if we interpret it as an unsigned number. However, since we are using signed numbers, 
we need to interpret the result as a signed number. Interpreting 1001 as a signed number gives –7, which of course is 
incorrect. The problem here is that the range for a 4-bit signed number is from –8 to +7, and +9 is outside of this 
range.    ♦ 

Although the addition in this example did not resulted in an overflow bit, but the final answer is incorrect. In 
order to correct this problem, we need to add (at least) one extra bit by sign extending the number. The corrected 
arithmetic is shown in Example 4.5. 

Example 4.5: Adding 5-bit signed numbers 

Use 5-bit signed arithmetic to perform the following addition. 

 6 = 00110 
 + 3 = + 00011 
 9 = 01001 

The result 01001, when interpreted as a signed number, is 9. ♦ 

To extend a signed number, we need to add leading 0’s or 1’s depending on whether the original most 
significant bit is a 0 or a 1. If the most significant bit is a 0, we sign extend the number by adding leading 0’s. If the 
most significant bit is a 1, we sign extend the number by adding leading 1’s. By performing this sign extension, the 
value of the number is not changed, as shown in Example 4.6. 

Example 4.6: Performing sign extensions 

Sign extend the numbers 10010 and 0101 to 8-bits. 

For the number 10010, since the most significant bit is a 1, therefore, we need to add leading 1’s to make the 
number 8-bits long. The resulting number is 11110010. For the number 0101, since the most significant bit is a 0, 
therefore, we need to add leading 0’s to make the number 8-bits long. The resulting number is 00000101. The 
following shows that the two resulting numbers have the same value as the two original numbers. Since the first 
number is negative (because of the leading 1 bit) we need to perform the two-step process to evaluate its value. The 
second number is positive, so we can evaluate its value directly. 

 
 Original 

Number 
 Sign 

Extended 
 Original 

Number 
 Sign 

Extended 
 10010  11110010  0101  00000101 
Flip bits 01101  00001101     

Add 1 01110  00001110     
Value – 14  – 14  5  5 

    ♦ 

4.4 Subtractor 

We can construct a one-bit subtractor circuit similar to the method used for constructing the full adder. 
However, instead of the sum bit, si, for the addition, we have a difference bit, di, for the subtraction, and instead of 
having carry-in and carry-out signals, we have borrow-in (bi) and borrow-out (bi+1) signals. So, when we subtract the 
ith bit of the two operands, xi and yi, we get the difference of di = xi − yi. If, however, the previous bit on the right has 
to borrow from this ith bit, then input bi will be set to a 1, and the equation for the difference will be di = xi − bi − yi. 
On the other hand, if the ith bit has to borrow from the next bit on the left for the subtraction, then the output bi+1 will 
be set to a 1. The value borrowed is a 2, and so the resulting equation for the difference will be di = xi − bi + 2bi+1 − 
yi. Note that the symbols + and − used in this equation are for addition and subtraction, and not for logical 
operations. The term 2bi+1 is “2 multiply by bi+1.” Since bi+1 is a 1 when we have to borrow and we borrow a 2 each 
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time, the equation just adds a 2 when there is a borrow. When there is no borrow, bi+1 is 0, and so the term bi+1 
cancels out to 0. 

For example, consider the following subtraction of the two 4-bit binary numbers, X = 0100 and Y = 0011: 

0 1 0 0

1 100

1000

1 1

bibi+1

 

Consider the bit position that is highlighted in blue. Since the subtraction for the previous bit on the right has to 
borrow, bi is a 1. Moreover, bi+1 is also a 1, because the current bit has to borrow from the next bit on the left. When 
it borrows, it gets a 2. Therefore, di = xi − bi + 2bi+1 − yi = 0 – 1 + 2(1) – 1 = 0. 

The truth table for the 1-bit subtractor is shown in Figure 4.7(a), from which the equations for di and bi+1, as 
shown in Figure 4.7(b), are derived. From these two equations, we get the circuit for the subtractor, as shown in 
Figure 4.7(c). Figure 4.7(d) shows the logic symbol for the subtractor. 

Building a subtractor circuit for subtracting an n-bit operand can be done by daisy-chaining n 1-bit subtractor 
circuits together, similar to the adder circuit shown in Figure 4.3. However, there is a much better subtractor circuit, 
as shown in the next section. 

 
xi yi bi bi+1 di 
0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 

(a) 

di = xi'yi'bi + xi'yibi' + xiyi'bi' + xiyibi 
 = (xi'yi + xiyi' )bi' + (xi'yi' + xiyi)bi 
 = (xi ⊕ yi)bi' + (xi ⊕ yi)'bi 
 = xi ⊕ yi ⊕ bi 

bi+1 = xi'yi'bi + xi'yibi' + xi'yibi + xiyibi 
 = xi'bi(yi' + yi) + xi'yi(bi' + bi) + yibi(xi' + xi) 
 = xi'bi + xi'yi + yibi 

 
(b) 

xi yi

di

bi

bi+1

 
(c) 

FS

xi yi

bibi+1

di

 

 

(d) 

Figure 4.7 1-bit subtractor: (a) truth table; (b) equations for di and bi+1; (c) circuit; (d) logic symbol. 
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4.5 Adder-Subtractor Combination 

It turns out that, instead of having to build a separate adder and subtractor units, we can modify the ripple-carry 
adder (or the carry-lookahead adder) slightly to perform both operations. The modified circuit performs subtraction 
by adding the negated value of the second operand. In other words, instead of performing the subtraction A – B, the 
addition operation A + (– B) is performed. 

Recall that in two’s complement representation, to negate a value involves inverting all the 0 bits to 1’s and 1’s 
to 0’s, and then adding a 1. Hence, we need to modify the adder circuit so that we selectively can do either one of 
two things: (1) flip the bits of the B operand and then add an extra 1 for the subtraction operation, or (2) not flip the 
bits and not add an extra 1 for the addition operation. 

For this adder-subtractor combination circuit (in addition to the two input operands A and B), a select signal, s, 
is needed to select which operation to perform. The assignment of the two operations to the select signal s is shown 
in Figure 4.8(a). When s = 0, we want to perform an addition, and when s = 1, we want to perform a subtraction. 
When s = 0, B does not need to be modified, and like the adder circuit from Section 4.2.2, the initial carry-in signal 
c0 needs to be set to a 0. On the other hand, when s = 1, we need to invert the bits in B and add a 1. The addition of a 
1 is accomplished by setting the initial carry-in signal c0 to a 1. Two circuits are needed for handling the above 
situations: one for inverting the bits in B and one for setting c0. Both of these circuits are dependent on s. 

The truth table for these two circuits is shown in Figure 4.8(b). The input variable bi is the ith bit of the B 
operand. The output variable yi is the output from the circuit that either inverts or does not invert the bits in B. From 
this truth table, we can conclude that the circuit for yi is just a 2-input XOR gate, while the circuit for c0 is just a 
direct connection from s. Putting everything together, we obtain the adder-subtractor combination circuit (for four 
bits), as shown in Figure 4.8(c). The logic symbol for the circuit is shown in Figure 4.8(d). 

 

s Function Operation 
0 Add F = A + B 
1 Subtract F = A + B' + 1 

 

(a) 

s bi yi c0 

0 0 0 0 
0 1 1 0 
1 0 1 1 
1 1 0 1 

(b) 

s

cout
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Unsigned_
Overflow

a3 b3

FA

f3

y3

c3

a1 b1
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c1

f1

y1

a2 b2

FA
c2

f2

y2

a0 b0

FA
c0

f0
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(c) 

thick lines

Unsigned_
Overflow
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s

4

Signed_
Overflow

4

BA

4

Adder-
Subtractor

 

(d) 

Figure 4.8 Adder-subtractor combination: (a) operation table; (b) truth table for yi and c0; (c) circuit; (d) logic 
symbol. 

Notice the adder-subtractor circuit in Figure 4.8(c) has two different overflow signals, Unsigned_Overflow and 
Signed_Overflow. This is because the circuit can deal with both signed and unsigned numbers. When working with 
unsigned numbers only, the output signal Unsigned_Overflow is sufficient to determine whether there is an overflow 
or not. However, for signed numbers, we need to perform the XOR of Unsigned_Overflow with c3, producing the 
Signed_Overflow signal in order to determine whether there is an overflow or not. 
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For example, the valid range for a 4-bit signed number goes from –23 to 23 – 1 (i.e., from –8 to 7). Adding the 
two signed numbers, 4 + 5 = 9 should result in a signed number overflow, since 9 is outside the range. However, the 
valid range for a 4-bit unsigned number goes from 0 to 24 – 1 (i.e., 0 to 15).  If we treat the two numbers 4 and 5 as 
unsigned numbers, then the result of adding these two unsigned numbers, 9, is inside the range. So when adding the 
two numbers 4 and 5, the Unsigned_Overflow signal should be de-asserted, while the Signed_Overflow signal 
should be asserted. Performing the addition of 4 + 5 in binary as shown here: 

0 1 0

110+

101
1

0

0

0 0

c3

Unsigned
Overflow

0 XOR 1 = 1
Signed

Overflow  

we get 0100 + 0101 = 1001, which produces a 0 for the Unsigned_Overflow signal. However, the addition produces 
a 1 for c3, and XORing these two values, 0 for Unsigned_Overflow and 1 for c3, results in a 1 for the 
Signed_Overflow signal. 

In another example, adding the two 4-bit signed numbers, –4 + (–3) = –7 should not result in a signed overflow. 
Performing the arithmetic in binary, –4 = 1100 and –3 = 1101, as shown here: 

1 1 0

111+

101
1

0

0

1 0

c3

Unsigned
Overflow

1 XOR 1 = 0
Signed

Overflow  

we get 1100 + 1101 = 11001, which produces a 1 for both Unsigned_Overflow and c3. XORing these two values 
together gives a 0 for the Signed_Overflow signal. On the other hand, if we treat the two binary numbers, 1100 and 
1101, as unsigned numbers, then we are adding 12 + 13 = 25. Then 25 is outside the unsigned number range, and so 
the Unsigned_Overflow signal should be asserted. 

The behavioral VHDL code for the 4-bit adder-subtractor combination circuit is shown in Figure 4.9. The 
GENERIC keyword declares a read-only constant identifier, n, of type INTEGER having a default value of 4. This 
constant identifier then is used in the declaration of the STD_LOGIC_VECTOR size for the three vectors: A, B, and F. 

The Unsigned_Overflow bit is obtained by performing the addition or subtraction operation using n + 1 bits.  
The two operands are zero extended using the & symbol for concatenation before the operation is performed. The 
result of the operation is stored in the n + 1 bit vector, result. The most significant bit of this vector, result(n), is the 
Unsigned_Overflow bit. 

To get the Signed_Overflow bit, we need to XOR the Unsigned_Overflow bit with the carry bit, c3, from the 
second-to-last bit slice. The c3 bit is obtained just like how the Unsigned_Overflow bit is obtained, except that the 
operation is performed on only the first n – 1 bits of the two operands. The vector c3 of length n is used for storing 
the result of the operation. The Signed_Overflow signal is the XOR of result(n) with c3(n–1). 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.STD_LOGIC_UNSIGNED.ALL; 



Chapter 4 − Standard Combinational Components  Page 13 of 38 

Digital Logic and Microprocessor Design with VHDL  Copyright Enoch Hwang  

ENTITY AddSub IS 
GENERIC(n: INTEGER :=4); -- default number of bits = 4 
PORT(S: IN STD_LOGIC; -- select subtract signal 
 A: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0); 
 B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0); 
 F: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0); 
 unsigned_overflow: OUT STD_LOGIC; 
 signed_overflow: OUT STD_LOGIC); 
END AddSub; 

ARCHITECTURE Behavioral OF AddSub IS 
 -- temporary result for extracting the unsigned overflow bit 
 SIGNAL result: STD_LOGIC_VECTOR(n DOWNTO 0); 
 -- temporary result for extracting the c3 bit 
 SIGNAL c3:  STD_LOGIC_VECTOR(n-1 DOWNTO 0); 
BEGIN  
 PROCESS(S, A, B) 
 BEGIN 
  IF (S = '0') THEN  -- addition 
   -- the two operands are zero extended one extra bit before adding 
   -- the & is for string concatination 
   result <= ('0' & A) + ('0' & B); 
   c3  <= ('0' & A(n-2 DOWNTO 0)) + ('0' & B(n-2 DOWNTO 0)); 
   F <= result(n-1 DOWNTO 0);  -- extract the n-bit result 
   unsigned_overflow <= result(n); -- get the unsigned overflow bit 
   signed_overflow <= result(n) XOR c3(n-1); -- get signed overflow bit 
  ELSE     -- subtraction 
   -- the two operands are zero extended one extra bit before subtracting 
   -- the & is for string concatination 
   result <= ('0' & A) - ('0' & B); 
   c3  <= ('0' & A(n-2 DOWNTO 0)) - ('0' & B(n-2 DOWNTO 0)); 
   F <= result(n-1 DOWNTO 0);  -- extract the n-bit result  
   unsigned_overflow <= result(n); -- get the unsigned overflow bit 
   signed_overflow <= result(n) XOR c3(n-1); -- get signed overflow bit 
  END IF; 
 END PROCESS; 
END Behavioral; 

Figure 4.9 Behavioral VHDL code for a 4-bit adder-subtractor combination component.  

4.6 Arithmetic Logic Unit 

The arithmetic logic unit (ALU) is one of the main components inside a microprocessor. It is responsible for 
performing arithmetic and logic operations, such as addition, subtraction, logical AND, and logical OR. The ALU, 
however, is not used to perform multiplications or divisions. It turns out that, in constructing the circuit for the ALU, 
we can use the same idea as for constructing the adder-subtractor combination circuit, as discussed in the previous 
section. Again, we will use the ripple-carry adder as the building block and then insert some combinational logic 
circuitry in front of the two input operands to each full adder. This way, the primary inputs will be modified 
accordingly, depending on the operations being performed before being passed to the full adder. The general, overall 
circuit for a 4-bit ALU is shown in Figure 4.10(a) and its logic symbol in Figure 4.10(b). 
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As we can see in the Figure 4.10(a), the two combinational circuits in front of the full adder (FA) are labeled LE 
and AE. The logic extender (LE) is for manipulating all logical operations; whereas, the arithmetic extender (AE) is 
for manipulating all arithmetic operations. The LE performs the actual logical operations on the two primary 
operands, ai and bi, before passing the result to the first operand, xi, of the FA. On the other hand, the AE only 
modifies the second operand, bi, and passes it to the second operand, yi, of the FA where the actual arithmetic 
operation is performed. 
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Figure 4.10 4-bit ALU: (a) circuit; (b) logic symbol. 

We saw from the adder-subtractor circuit that, to perform additions and subtractions, we only need to modify yi 
(the second operand to the FA) so that all operations can be done with additions. Thus, the AE only takes the second 
operand of the primary input, bi, as its input and modifies the value depending on the operation being performed. Its 
output is yi, and it is connected to the second operand input of the FA. As in the adder-subtractor circuit, the addition 
is performed in the FA. When arithmetic operations are being performed, the LE must pass the first operand 
unchanged from the primary input ai to the output xi for the FA. 

Unlike the AE (where it only modifies the operand), the LE performs the actual logical operations. Thus, for 
example, if we want to perform the operation A OR B, the LE for each bit slice will take the corresponding bits, ai 
and bi, and OR them together. Hence, one bit from both operands, ai and bi, are inputs to the LE. The output of the 
LE is passed to the first operand, xi, of the FA. Since this value is already the result of the logical operation, we do 
not want the FA to modify it but to simply pass it on to the primary output, fi. This is accomplished by setting both 
the second operand, yi, of the FA and c0 to 0, since adding a 0 will not change the resulting value. 
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The combinational circuit labeled CE (for carry extender) is for modifying the primary carry-in signal, c0, so 
that arithmetic operations are performed correctly. Logical operations do not use the carry signal, so c0 is set to 0 for 
all logical operations. 

 
s2 s1 s0 Operation Name Operation xi (LE) yi (AE) c0 (CE) 
0 0 0 Pass Pass A to output ai 0 0 
0 0 1 AND A AND B ai AND bi 0 0 
0 1 0 OR A OR B ai OR bi 0 0 
0 1 1 NOT A' ai' 0 0 
1 0 0 Addition A + B ai bi 0 
1 0 1 Subtraction A – B ai bi' 1 
1 1 0 Increment A + 1 ai 0 1 
1 1 1 Decrement A – 1 ai 1 0 

(a) 
 

s2 s1 s0 xi 
0 0 0 ai 
0 0 1 ai bi 
0 1 0 ai + bi 
0 1 1 ai' 
1 × × ai 

 

(b) 

s2 s1 s0 bi yi 
0 × × × 0 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 1 
1 1 1 1 1 

(c) 

s2 s1 s0 c0 
0 × × 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 0 

 

(d) 

Figure 4.11 ALU operations: (a) function table; (b) LE truth table; (c) AE truth table; (d) CE truth table. 

In the circuit shown in Figure 4.10, three select lines, s2, s1, and s0, are used to select the operations of the ALU. 
With these three select lines, the ALU circuit can implement up to eight different operations. Suppose that the 
operations that we want to implement in our ALU are as defined in Figure 4.11(a). The xi column shows the values 
that the LE must generate for the different operations. The yi column shows the values that the AE must generate. 
The c0 column shows the carry signals that the CE must generate. 

For example, for the pass-through operation, the value of ai is passed through without any modifications to xi. 
For the AND operation, xi gets the result of ai AND bi. As mentioned before, both yi and c0 are set to 0 for all of the 
logical operations, because we do not want the FA to change the results. The FA is used only to pass the results from 
the LE straight through to the output, F. For the subtraction operation, instead of subtracting B, we want to add –B. 
Changing B to –B in two’s complement format requires flipping the bits of B and then adding a 1. Thus, yi gets the 
inverse of bi, and the 1 is added through the carry-in, c0. To increment A, we set yi to all 0’s, and add the 1 through 
the carry-in, c0. To decrement A, we add a –1 instead. Negative one in two’s complement format is a bit string with 
all 1’s. Hence, we set yi to all 1’s and the carry-in c0 to 0. For all the arithmetic operations, we need the first operand, 
A, unchanged for the FA. Thus, xi gets the value of ai for all arithmetic operations. 

Figure 4.11(b), (c) and (d) show the truth tables for the LE, AE, and CE, respectively. The LE circuit is derived 
from the xi column of Figure 4.11(b); the AE circuit is derived from the yi column of Figure 4.11(c); and the CE 
circuit is derived from the c0 column of Figure 4.11(d). Notice that xi is dependent on five variables, s2, s1, s0, ai, and 
bi; whereas, yi is dependent on only four variables, s2, s1, s0, and bi; and c0 is dependent on only the three select lines, 
s2, s1, and s0. The K-maps, equations, and schematics for these three circuits are shown in Figure 4.12. 

The behavioral VHDL code for the ALU is shown in Figure 4.13, and a sample simulation trace for all the 
operations using the two inputs 5 and 3 is shown in Figure 4.14. 
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Figure 4.12 K-maps, equations, and schematics for: (a) LE; (b) AE; and (c) CE. 
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LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
-- The following package is needed so that the STD_LOGIC_VECTOR signals 
-- A and B can be used in unsigned arithmetic operations. 
USE IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
ENTITY alu IS PORT ( 
 S: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- select for operations 
 A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0); -- input operands 
 F: OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); -- output 
END alu; 
 
ARCHITECTURE Behavior OF alu IS 
BEGIN 
 PROCESS(S, A, B) 
 BEGIN 
   CASE S IS 
   WHEN "000" =>  -- pass A through 
    F <= A; 
   WHEN "001" =>  -- AND 
    F <= A AND B; 
   WHEN "010" =>  -- OR 
    F <= A OR B; 
   WHEN "011" =>  -- NOT A 
    F <= NOT A; 
   WHEN "100" =>  -- add 
    F <= A + B; 
   WHEN "101" =>  -- subtract 
    F <= A - B; 
   WHEN "110" =>  -- increment 
    F <= A + 1; 
   WHEN OTHERS => -- decrement 
    F <= A - 1; 
   END CASE; 
 END PROCESS; 
END Behavior; 

Figure 4.13 Behavioral VHDL code for an ALU.  

 

 
Figure 4.14 Sample simulation trace with the two input operands, 5 and 3, for all of the eight operations. 

AND OR NOT A Add Subtract Increment DecrementPass A 
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4.7 Decoder 

A decoder, also known as a demultiplexer, asserts one out of n output lines, depending on the value of an m-
bit binary input data. In general, an m-to-n decoder has m input lines, Am-1, …, A0, and n output lines, Yn-1, …, Y0, 
where n = 2m. In addition, it has an enable line, E, for enabling the decoder. When the decoder is disabled with E set 
to 0, all of the output lines are de-asserted. When the decoder is enabled, then the output line whose index is equal to 
the value of the input binary data is asserted. For example, for a 3-to-8 decoder, if the input address is 101, then the 
output line Y5 is asserted (set to 1 for active-high), while the rest of the output lines are de-asserted (set to 0 for 
active-high). 

A decoder is used in a system having multiple components, and we want only one component to be selected or 
enabled at any one time. For example, in a large memory system with multiple memory chips, only one memory 
chip is enabled at a time. One output line from the decoder is connected to the enable input on each memory chip. 
Thus, an address presented to the decoder will enable that corresponding memory chip. The truth table, circuit, and 
logic symbol for a 3-to-8 decoder are shown in Figure 4.15. 

A larger size decoder can be implemented using several smaller decoders. For example, Figure 4.16 uses seven 
1-to-2 decoders to implement a 3-to-8 decoder. The correct operation of this circuit is left as an exercise for the 
reader. 

The behavioral VHDL code for the 3-to-8 decoder is shown in Figure 4.17. 
 

E A2 A1 A0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 
0 × × × 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 1 
1 0 0 1 0 0 0 0 0 0 1 0 
1 0 1 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 0 0 0 1 0 0 0 
1 1 0 0 0 0 0 1 0 0 0 0 
1 1 0 1 0 0 1 0 0 0 0 0 
1 1 1 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 

(a) 

 

A1

A0

E

Y0Y1Y2Y3Y4Y5Y6Y7

A2

 

Y2 Y1 Y0Y3Y4Y5Y6Y7
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 (b) (c) 

Figure 4.15 A 3-to-8 decoder: (a) truth table; (b) circuit; (c) logic symbol. 
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E1 0

E1 0 E1 0
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A0E

Y5 Y4Y7 Y6  
Figure 4.16 A 3-to-8 decoder implemented with seven 1-to-2 decoders 

-- A 3-to-8 decoder 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY Decoder IS PORT( 
 E: IN STD_LOGIC;      -- enable 
 A: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- 3 bit address 
 Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- data bus output 
END Decoder; 
 
ARCHITECTURE Behavioral OF Decoder IS 
BEGIN 
 PROCESS (E, A) 
 BEGIN 
  IF (E = '0') THEN    -- disabled 
   Y <= (OTHERS => '0');  -- 8-bit vector of 0 
  ELSE 
   CASE A IS        -- enabled 
    WHEN "000" => Y <= "00000001"; 
    WHEN "001" => Y <= "00000010"; 
    WHEN "010" => Y <= "00000100"; 
    WHEN "011" => Y <= "00001000"; 
    WHEN "100" => Y <= "00010000"; 
    WHEN "101" => Y <= "00100000"; 
    WHEN "110" => Y <= "01000000"; 
    WHEN "111" => Y <= "10000000"; 
    WHEN OTHERS => NULL; 
   END CASE; 
  END IF; 
 END PROCESS; 
END Behavioral; 

Figure 4.17 Behavioral VHDL code for a 3-to-8 decoder. 
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4.8 Encoder 
An encoder is almost like the inverse of a decoder where it encodes a 2n-bit input data into an n-bit code. The 

encoder has 2n input lines and n output lines, as shown by the logic symbol in Figure 4.18(d) for n = 3. The 
operation of the encoder is such that exactly one of the input lines should have a 1 while the remaining input lines 
should have 0’s. The output is the binary value of the index of the input line that has the 1. The truth table for an 8-
to-3 encoder is shown in Figure 4.18(a). For example, when input I3 is a 1, the three output bits Y2, Y1, and Y0, are set 
to 011, which is the binary number for the index 3. Entries having multiple 1’s in the truth table inputs are ignored, 
since we are assuming that only one input line can be a 1.  

Looking at the three output columns in the truth table, we obtain the three equations shown in Figure 4.18(b) 
and the resulting circuit in Figure 4.18(c). The logic symbol is shown in Figure 4.18(d). 

Encoders are used to reduce the number of bits needed to represent some given data either in data storage or in 
data transmission. Encoders are also used in a system with 2n input devices, each of which may need to request for 
service. One input line is connected to one input device. The input device requesting for service will assert the input 
line that is connected to it. The corresponding n-bit output value will indicate to the system which of the 2n devices 
is requesting for service. For example, if device 5 requests for service, it will assert the I5 input line. The system will 
know that device 5 is requesting for service, since the output will be 101 = 5. However, this only works correctly if 
it is guaranteed that only one of the 2n devices will request for service at any one time. 

If two or more devices request for service at the same time, then the output will be incorrect. For example, if 
devices 1 and 4 of the 8-to-3 encoder request for service at the same time, then the output will also be 101, because 
I4 will assert the Y2 signal, and I1 will assert the Y0 signal. To resolve this problem, a priority is assigned to each of 
the input lines so that when multiple requests are made, the encoder outputs the index value of the input line with the 
highest priority. This modified encoder is known as a priority encoder. 
 

I7 I6 I5 I4 I3 I2 I1 I0 Y2 Y1 Y0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 1 
0 0 0 0 0 1 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 1 1 
0 0 0 1 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 1 0 1 
0 1 0 0 0 0 0 0 1 1 0 
1 0 0 0 0 0 0 0 1 1 1 

(a) 

Y0 = I1 + I3 + I5 + I7 
Y1 = I2 + I3 + I6 + I7 
Y2 = I4 + I5 + I6 + I7 

 

(b) 
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Figure 4.18 An 8-to-3 encoder: (a) truth table; (b) equations; (c) circuit; (d) logic symbol. 
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4.8.1 * Priority Encoder 

The truth table for an active-high 8-to-3 priority encoder is shown in Figure 4.19. The table assumes that input 
I7 has the highest priority, and I0 has the lowest priority. For example, if the highest priority input asserted is I3, then 
it doesn’t matter whether the lower priority input lines, I2, I1 and I0, are asserted or not; the output will be for that of 
I3, which is 011. Since it is possible that no inputs are asserted, there is an extra output, Z, that is needed to 
differentiate between when no inputs are asserted and when one or more inputs are asserted. Z is set to a 1 when one 
or more inputs are asserted; otherwise, Z is set to 0. When Z is 0, all of the Y outputs are meaningless. 
 

I7 I6 I5 I4 I3 I2 I1 I0 Y2 Y1 Y0 Z 
0 0 0 0 0 0 0 0 × × × 0 
0 0 0 0 0 0 0 1 0 0 0 1 
0 0 0 0 0 0 1 × 0 0 1 1 
0 0 0 0 0 1 × × 0 1 0 1 
0 0 0 0 1 × × × 0 1 1 1 
0 0 0 1 × × × × 1 0 0 1 
0 0 1 × × × × × 1 0 1 1 
0 1 × × × × × × 1 1 0 1 
1 × × × × × × × 1 1 1 1 

Figure 4.19 An 8-to-3 priority encoder truth table. 

An easy way to derive the equations for the 8-to-3 priority encoder is to define a set of eight intermediate 
variables, v0, …, v7, such that vk is a 1 if Ik is the highest priority 1 input. Thus, the equations for v0 to v7 are: 

v0 = I7' I6' I5' I4' I3' I2' I1' I0 
v1 = I7' I6' I5' I4' I3' I2' I1 
v2 = I7' I6' I5' I4' I3' I2 
v3 = I7' I6' I5' I4' I3 
v4 = I7' I6' I5' I4 
v5 = I7' I6' I5 
v6 = I7' I6 
v7 = I7 

Using these eight intermediate variables, the final equations for the priority encoder are similar to the ones for 
the regular encoder, namely: 

Y0 = v1 + v3 + v5 + v7 
Y1 = v2 + v3 + v6 + v7 
Y2 = v4 + v5 + v6 + v7 

Finally, the equation for Z is simply 

Z = I7 + I6 + I5 + I4 + I3 + I2 + I1 + I0 

4.9 Multiplexer 

The multiplexer, or MUX for short, allows the selection of one input signal among n signals, where n > 1 and 
is a power of two. Select lines connected to the multiplexer determine which input signal is selected and passed to 
the output of the multiplexer. In general, an n-to-1 multiplexer has n data input lines, m select lines where m = log2 n 
(i.e., 2m = n), and one output line. For a 2-to-1 multiplexer, there is one select line, s, to select between the two 
inputs, d0 and d1. When s = 0, the input line, d0, is selected, and the data present on d0 is passed to the output, y. 
When s = 1, the input line, d1, is selected and the data on d1 is passed to y. The truth table, equation, circuit, and 
logic symbol for a 2-to-1 multiplexer are shown in Figure 4.20. 
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s d1 d0 y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

(a) 

y = s'd1'd0 + s'd1d0 + sd1d0' + sd1d0 
 = s'd0(d1' + d1) + sd1(d0' + d0) 
 = s'd0 + sd1 
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Figure 4.20 A 2-to-1 multiplexer: (a) truth table; (b) equation; (c) circuit; (d) logic symbol. 

Constructing a larger-sized multiplexer, such as the 8-to-1 multiplexer, can be done similarly. In addition to 
having the eight data input lines, d0 to d7, the 8-to-1 multiplexer has three (23 = 8) select lines, s0, s1, and s2. 
Depending on the value of the three select lines, one of the eight input lines will be selected and the data on that 
input line will be passed to the output. For example, if the value of the select lines is 101, then the input line d5 is 
selected, and the data that is present on d5 will be passed to the output. 

The truth table, circuit, and logic symbol for the 8-to-1 multiplexer are shown in Figure 4.21. The truth table is 
written in a slightly different format. Instead of including the d’s in the input columns and enumerating all 211 = 
2048 rows (the eleven variables come from the eight d’s and the three s’s), the d’s are written in the entry under the 
output column. For example, when the select line value is 101, the entry under the output column is d5, which means 
that y takes on the value of the input line d5. 

To understand the circuit in Figure 4.21(b), notice that each AND gate acts as a switch and is turned on by one 
combination of the three select lines. When a particular AND gate is turned on, the data at the corresponding d input 
is passed through that AND gate. The outputs of the remaining AND gates are all 0’s. 
 

s2 s1 s0 y 
0 0 0 d0 
0 0 1 d1 
0 1 0 d2 
0 1 1 d3 
1 0 0 d4 
1 0 1 d5 
1 1 0 d6 
1 1 1 d7 
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Figure 4.21 An 8-to-1 multiplexer: (a) truth table; (b) circuit; (c) logic symbol. 

Instead of using 4-input AND gates (where three of its inputs are used by the three select lines to turn it on) we 
can use 2-input AND gates, as shown in Figure 4.22(a). This way the AND gate is turned on with just one line. The 
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eight 2-input AND gates can be turned on individually from the eight outputs of a 3-to-8 decoder. Recall from 
Section 4.7 that the decoder asserts only one output line at any time. 

Larger multiplexers can also be constructed from smaller multiplexers. For example, an 8-to-1 multiplexer can 
be constructed using seven 2-to-1 multiplexers, as shown in Figure 4.22(b). The four top-level 2-to-1 multiplexers 
provide the eight data inputs and all are switched by the same least significant select line s0. This top level selects 
one from each group of two data inputs. The middle level then groups the four outputs from the top level again into 
groups of two, and selects one from each group using the select line s1. Finally, the multiplexer at the bottom level 
uses the most significant select line s2 to select one of the two outputs from the middle level multiplexers. 

The VHDL code for an 8-bit wide 4-to-1 multiplexer is shown in Figure 4.23. Two different implementations of 
the same multiplexer are shown. Figure 4.23(a) shows the architecture code written at the behavioral level, since it 
uses a PROCESS statement. Inside the PROCESS block, a CASE statement is used to select between the four choices for 
S. Figure 4.23(b) shows a dataflow level architecture code using a concurrent selected signal assignment statement 
using the keyword WITH … SELECT. In the first choice, if S is equal to 00, then the value D0 is assigned to Y. If S 
does not match any one of the four choices, 00, 01, 10, and 11, then the WHEN OTHERS clause is selected. The syntax 
(OTHERS => 'U') straight quotes means to fill the entire vector with the value “U”. 
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Figure 4.22 An 8-to-1 multiplexer implemented using: (a) a 3-to-8 decoder; (b) seven 2-to-1 multiplexers. 

-- A 4-to-1 8-bit wide multiplexer 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY Multiplexer IS PORT ( 
 S: IN STD_LOGIC_VECTOR(1 DOWNTO 0); -- select lines 
 D0, D1, D2, D3: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- data bus input 
 Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- data bus output 
END Multiplexer; 
 
-- Behavioral level code 
ARCHITECTURE Behavioral OF Multiplexer IS 
BEGIN 
 PROCESS (S,D0,D1,D2,D3) 
 BEGIN 
  CASE S IS 
   WHEN "00" => Y <= D0; 
   WHEN "01" => Y <= D1; 
   WHEN "10" => Y <= D2; 
   WHEN "11" => Y <= D3; 
   WHEN OTHERS => Y <= (OTHERS => 'U');  -- 8-bit vector of U 
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  END CASE; 
 END PROCESS; 
END Behavioral; 

(a) 

-- Dataflow level code 
ARCHITECTURE Dataflow OF Multiplexer IS 
BEGIN 
 WITH S SELECT Y <= 
   D0 WHEN "00", 
   D1 WHEN "01", 
   D2 WHEN "10", 
   D3 WHEN "11", 
   (OTHERS => 'U') WHEN OTHERS;    -- 8-bit vector of U 
END Dataflow; 

(b) 

Figure 4.23 VHDL code for an 8-bit wide 4-to-1 multiplexer: (a) behavioral level; (b) dataflow level.  

4.9.1 * Using Multiplexers to Implement a Function 

Multiplexers can be used to implement a Boolean function very easily. In general, for an n-variable function, a 
2n-to-1 multiplexer (that is, a multiplexer with n select lines) is needed. An n-variable function has 2n minterms, and 
each minterm corresponds to one of the 2n multiplexer inputs. The n input variables are connected to the n select 
lines of the multiplexer. Depending on the values of the n variables, one data input line will be selected, and the 
value on that input line is passed to the output. Therefore, all we need to do is to connect all of the data input lines to 
either a 1 or a 0, depending on whether we want that corresponding minterm to be a 1-minterm or a 0-minterm, 
respectively. 

Figure 4.24 shows the implementation of the 3-variable function, F (x, y, z) = x'y'z' + x'yz' + xy'z + xyz' + xyz. 
The 1-minterms for this function are m0, m2, m5, m6, and m7, so the corresponding data input lines d0, d2, d5, d6, and 
d7 are connected to a 1, while the remaining data input lines are connected to a 0. For example, the 0-minterm x'yz 
has the value 011, which will select the d3 input, so a 0 passes to the output. On the other hand, the 1-minterm xy'z 
has the value 101, which will select the d5 input, so a 1 passes to the output. 
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F
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Figure 4.24 Using an 8-to-1 multiplexer to implement the function F (x, y, z) = x'y'z' + x'yz' + xy'z + xyz' + xyz. 

4.10 Tri-state Buffer 

A tri-state buffer, as the name suggests, has three states: 0, 1, and a third state denoted by Z. The value Z 
represents a high-impedance state, which for all practical purposes acts like a switch that is opened or a wire that is 
cut. Tri-state buffers are used to connect several devices to the same bus. A bus is one or more wire for transferring 
signals. If two or more devices are connected directly to a bus without using tri-state buffers, signals will get 
corrupted on the bus because the devices are always outputting either a 0 or a 1. However, with a tri-state buffer in 
between, devices that are not using the bus can disable the tri-state buffer so that it acts as if those devices are 
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physically disconnected from the bus. At any one time, only one active device will have its tri-state buffers enabled, 
and thus, use the bus. 

The truth table and symbol for the tri-state buffer is shown in Figure 4.25(a) and (b). The active-high enable line 
E turns the buffer on or off. When E is de-asserted with a 0, the tri-state buffer is disabled, and the output y is in its 
high-impedance Z state. When E is asserted with a 1, the buffer is enabled, and the output y follows the input d. 

A circuit consisting of only logic gates cannot produce the high-impedance state required by the tri-state buffer, 
since logic gates can only output a 0 or a 1. To provide the high impedance state, the tri-state buffer circuit uses two 
transistors in conjunction with logic gates, as shown in Figure 4.25(c). Section 5.3 will discuss the operations of 
these two transistors in detail. For now, we will keep it simple. The top PMOS transistor is enabled with a 0 at the 
node labeled A, and when it is enabled, a 1 signal from Vcc passes down through the transistor to y. The bottom 
NMOS transistor is enabled with a 1 at the node labeled B, and when it is enabled, a 0 signal from ground passes up 
through the transistor to y. When the two transistors are disabled (with A = 1 and B = 0) they will both output a high 
impedance Z value; so y will have a Z value. 

Having the two transistors, we need a circuit that will control these two transistors so that together they realize 
the tri-state buffer function. The truth table for this control circuit is shown in Figure 4.25(d). The truth table is 
derived as follows. When E = 0 (it does not matter what the input d is) we want both transistors to be disabled so 
that the output y has the Z value. The PMOS transistor is disabled when the input A = 1; whereas, the NMOS 
transistor is disabled when the input B = 0. When E = 1 and d = 0, we want the output y to be a 0. To get a 0 on y, we 
need to enable the bottom NMOS transistor and disable the top PMOS transistor so that a 0 will pass through the 
NMOS transistor to y. To get a 1 on y for when E = 1 and d = 1, we need to do the reverse by enabling the top 
PMOS transistor and disabling the bottom NMOS transistor. 

The resulting circuit is shown in Figure 4.25(c). When E = 0, the output of the NAND gate is a 1 regardless of 
what the other input is, and so the top PMOS transistor is turned off. Similarly, the output of the AND gate is a 0, and 
so the bottom NMOS transistor is also turned off. Thus, when E = 0, both transistors are off, so the output y is in the 
Z state. 

When E = 1, the outputs of both the NAND and AND gates are equal to d'.  So if d = 0, the output of the two gates 
are both 1, so the bottom transistor is turned on while the top transistor is turned off. Thus, y will have the value 0, 
which is equal to d. On the other hand, if d = 1, the top transistor is turned on while the bottom transistor is turned 
off, and y will have the value 1. 

The behavioral VHDL code for an 8-bit wide tri-state buffer is shown in Figure 4.26. 
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Figure 4.25 Tri-state buffer: (a) truth table; (b) logic symbol; (c) circuit; (d) truth table for the control portion of the 
tri-state buffer circuit. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY TriState_Buffer IS PORT ( 
 E: IN STD_LOGIC; 
 d: IN STD_LOGIC_VECTOR(7 DOWNTO 0); 
 y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); 
END TriState_Buffer; 
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ARCHITECTURE Behavioral OF TriState_Buffer IS 
BEGIN 
 PROCESS (E, d) 
 BEGIN 
  IF (E = '1') THEN 
   y <= d; 
  ELSE 
   y <= (OTHERS => 'Z'); -- to get 8 Z values 
  END IF; 
 END PROCESS; 
END Behavioral; 

Figure 4.26 VHDL code for an 8-bit wide tri-state buffer.  

4.11 Comparator 

Quite often, we need to compare two values for their arithmetic relationship (equal, greater, less than, etc.). A 
comparator is a circuit that compares two binary values and indicates whether the relationship is true or not. To 
compare whether a value is equal or not equal to a constant value, a simple AND gate can be used. For example, to 
compare a 4-bit variable x with the constant 3, the circuit in Figure 4.27(a) can be used. The AND gate outputs a 1 
when the input is equal to the value 3. Since 3 is 0011 in binary, therefore, x3 and x2 must be inverted. 

The XOR and XNOR gates can be used for comparing inequality and equality, respectively, between two values. 
The XOR gate outputs a 1 when its two input values are different. Hence, we can use one XOR gate for comparing 
each bit pair of the two operands. A 4-bit inequality comparator is shown in Figure 4.27(b). Four XOR gates are used, 
with each one comparing the same bit from the two operands. The outputs of the XOR gates are ORed together so that 
if any bit pair is different then the two operands are different, and the resulting output is a 1. Similarly, an equality 
comparator can be constructed using XNOR gates instead, since the XNOR gate outputs a 1 when its two input values 
are the same. 

To compare the greater-than or less-than relationships, we can construct a truth table and build the circuit from 
it. For example, to compare whether a 4-bit value X is less than five, we get the truth table, equation, and circuit 
shown in Figure 4.27(c). 
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x3 x2 x1 x0 (X < 5) 
0 0 0 0 1 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 1 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 0 
1 × × × 0 

 (X < 5) = x3'x2' + x3'x2x1'x0' 

(X < 5)
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(c) 
 
Figure 4.27 Simple 4-bit comparators for: (a) X = 3; (b) X ≠ Y; (c) X < 5. 

Instead of constructing a comparator for a fixed number of bits for the input values, we often prefer to construct 
an iterative circuit by constructing a 1-bit slice comparator and then daisy chaining n of them together to make an 
n-bit comparator. The 1-bit slice comparator will have (in addition to the two input operand bits, xi and yi) a pi bit 
that keeps track of whether all the previous bit pairs compared so far are true or not for that particular relationship. 
The circuit outputs a 1 if pi = 1, and the relationship is true for the current bit pair, xi and yi. Figure 4.28(a) shows a 
1-bit slice comparator for the equal relationship. If the current bit pair, xi and yi, is equal, the XNOR gate will output a 
1. Hence, pi+1 = 1 if the current bit pair is equal and the previous bit pair, pi, is a 1. To obtain a 4-bit iterative equality 
comparator, we connect four 1-bit equality comparators in series, as shown in Figure 4.28(b). The initial p0 bit must 
be set to a 1. Thus, if all four bit pairs are equal, then the last bit, p4, will be a 1; otherwise, p4 will be a 0. 
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Figure 4.28 Iterative comparators: (a) 1-bit slice for xi = yi; (b) 4-bit X = Y. 

Building an iterative comparator circuit for the greater-than relationship is slightly more difficult. The 1-bit slice 
comparator circuit for the condition xi > yi is constructed as follows. In addition to the two operand input bits, xi and 
yi, there are also two status input bits, gin and ein. Here, gin is a 1 if the condition xi > yi is true for the previous bit 
slice; otherwise, gin is a 0. Furthermore, ein is a 1 if the condition xi = yi is true; otherwise, ein is a 0. The circuit also 
has two status output bits, gout and eout, having the same meaning as the gin and ein signals. These two input and two 
output status bits allow the bit slices to be daisy-chained together. Following the above description of the 1-bit slice, 
we obtain the truth table shown in Figure 4.29(a). The equations for eout and gout are shown in Figure 4.29(b), and the 
1-bit slice circuit in Figure 4.29(c). 
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In order for the bit slices to operate correctly, we need to perform the comparisons from the most significant bit 
to the least significant bit. The complete 4-bit iterative comparator circuit for the condition x > y is shown in Figure 
4.29(d). The initial values for gin and ein must be set to gin = 0 and ein = 1. 

If x = y, then the last eout is a 1; otherwise, eout is a 0. If the last eout is a 0, then the last gout can be either a 1 or a 
0. If x > y then gout is a 1; otherwise, gout is a 0. Notice that both eout and gout cannot be both 1’s. The operation of this 
comparator circuit is summarized in Figure 4.29(e). 
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Condition eout gout 

Invalid 1 1 
x = y 1 0 
x > y 0 1 
x < y 0 0 

(e) 

Figure 4.29 Comparator for x > y: (a) truth table for a 1-bit slice; (b) K-maps and equations for gout and eout; (c) 
circuit for 1-bit slice; (d) 4-bit x > y comparator circuit; (e) operational table. 

4.12 Shifter 

The shifter is used for shifting bits in a binary word one position either to the left or to the right. The operations 
for the shifter are referred to either as shifting or rotating, depending on how the end bits are shifted in or out. For a 
shift operation, the two end bits do not wrap around; whereas for a rotate operation, the two end bits wrap around. 
Figure 4.30 shows six different shift and rotate operations. 

For example, for the “Shift left with 0” operation, all of the bits are shifted one position to the left. The original 
leftmost bit is shifted out (i.e., discarded) and the rightmost bit is filled with a 0. For the “Rotate left” operation, all 
of the bits are shifted one position to the left. However, instead of discarding the leftmost bit, it is shifted in as the 
rightmost bit (i.e., it rotates around). 

For each bit position, a multiplexer is used to move a bit from either the left or right to the current bit position. 
The size of the multiplexer will determine the number of operations that can be implemented. For example, we can 
use a 4-to-1 multiplexer to implement the four operations, as specified by the table in Figure 4.31(a). Two select 
lines, s1 and s0, are needed to select between the four different operations. For a 4-bit operand, we will need to use 
four 4-to-1 multiplexers, as shown in Figure 4.31(b). How the inputs to the multiplexers are connected will depend 
on the given operations. 

 
Operation Comment Example 

Shift left with 0 
Shift bits to the left one position. The 
leftmost bit is discarded and the rightmost 
bit is filled with a 0. 

10110100

101101000
 

Shift left with 1 Same as above, except that the rightmost bit 
is filled with a 1. 

10110100

101101001
 

Shift right with 0 
Shift bits to the right one position. The 
rightmost bit is discarded and the leftmost 
bit is filled with a 0. 

10110100

011010010
 

Shift right with 1 Same as above, except that the leftmost bit is 
filled with a 1. 

10110100

011010011
 

Rotate left 
Shift bits to the left one position. The 
leftmost bit is moved to the rightmost bit 
position. 

10110100

01101001
 

Rotate right 
Shift bits to the right one position. The 
rightmost bit is moved to the leftmost bit 
position. 

10110100

01101010
 

Figure 4.30 Shifter and rotator operations. 
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s1 s0 Operation 
0 0 Pass through 
0 1 Shift left and fill with 0 
1 0 Shift right and fill with 0 
1 1 Rotate right 
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Figure 4.31 A 4-bit shifter: (a) operation table; (b) circuit; (c) logic symbol. 

In this example, when s1 = s0 = 0, we want to pass the bit straight through without shifting (i.e., we want the 
value from ini to pass to outi). Given s1 = s0 = 0, d0 of the multiplexer is selected, hence, ini is connected to d0 of 
MUXi, which outputs to outi. For s1 = 0 and s0 = 1, we want to shift left (i.e., we want the value from ini to pass to 
outi+1). With s1 = 0 and s0 = 1, d1 of the multiplexer is selected, hence, ini is connected to d1 of MUXi+1, which 
outputs to outi+1. For this selection, we also want to shift in a 0 bit, so d1 of MUX0 is connected directly to a 0.  

The behavioral VHDL code for an 8-bit shifter having the functions as defined in Figure 4.31(a) is shown in 
Figure 4.32. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
ENTITY shifter IS PORT ( 
 S: IN STD_LOGIC_VECTOR(1 DOWNTO 0); -- select for operations 
 input: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- input 
 output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- output 
END shifter; 
 
ARCHITECTURE Behavior OF shifter IS 
BEGIN 
 PROCESS(S, input) 
 BEGIN 
   CASE S IS 
   WHEN "00" =>  -- pass through 
    output <= input; 
   WHEN "01" =>  -- shift left with 0 
    output <= input(6 DOWNTO 0) & '0'; 
   WHEN "10" =>  -- shift right with 0 
    output <= '0' & input(7 DOWNTO 1); 
   WHEN OTHERS =>  -- rotate right 
    output <= input(0) & input(7 DOWNTO 1); 
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   END CASE; 
 END PROCESS; 
END Behavior; 

Figure 4.32 Behavioral VHDL code for an 8-bit shifter having the operations as defined in Figure 4.31(a). 

4.12.1 * Barrel Shifter 

A barrel shifter is a shifter that can shift or rotate the data by any number of bits in a single operation. The 
select lines for a barrel shifter are used, not to determine what kind of operations (shift or rotate) to perform as for 
the general shifter, but rather, to determine how many bits to move. Hence, only one particular operation can be 
implemented in a barrel shifter circuit. In general, an n-bit barrel shifter can shift the data bits by as much as n – 1 
bit distance away in one operation. 

Figure 4.33(a) shows the operation table of a 4-bit barrel shifter implementing the rotate left operation. When 
s1s0 = 00, no rotation is performed (i.e., a pass through). When s1s0 = 01, the data bits are rotated one position to the 
left. When s1s0 = 10, the data bits are rotated two positions to the left. The corresponding circuit is shown in Figure 
4.33(b). 
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s1 s0 

Operation Output 
out3 out2 out1 out0 

00 No rotation in3 in2 in1 in0 
01 Rotate left by 1 bit position in2 in1 in0 in3 
10 Rotate left by 2 bit positions in1 in0 in3 in2 
11 Rotate left by 3 bit positions in0 in3 in2 in1 
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Figure 4.33 A 4-bit barrel shifter for the rotate left operation: (a) operation table; (b) circuit. 

4.13 * Multiplier 

In grade school, we were taught to multiply two numbers using a shift-and-add procedure. Regardless of 
whether the two numbers are in decimal or binary, we use the same shift-and-add procedure for multiplying them. In 
fact, multiplying with binary numbers is even easier, because you are always multiplying with either a 0 or a 1. 
Figure 4.34(a) shows the multiplication of two 4-bit unsigned binary numbers—the multiplicand M (m3m2m1m0) 
with the multiplier Q (q3q2q1q0)—to produce the resulting product P (p7p6p5p4p3p2p1p0). Notice that the intermediate 
products are always either the same as the multiplicand (if the multiplier bit is a 1) or it is zero (if the multiplier bit 
is a 0). 
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We can derive a combinational multiplication circuit based on this shift-and-add procedure, as shown in Figure 
4.34(b). Each intermediate product is obtained by ANDing the multiplicand M with one bit of the multiplier qi. Since 
qi is always a 1 or a 0, the output of the AND gates is always either mi or 0. For example, bit zero of the first 
intermediate product is obtained by ANDing m0 with q0; bit one is obtained by ANDing m1 with q0; and so on. Hence, 
the four bits for the first intermediate product are m3q0, m2q0, m1q0, and m0q0; the four bits for the second 
intermediate product are m3q1, m2q1, m1q1, and m0q1; and so on. 

Multiple adders are used to sum all of the intermediate products together to give the final product. Each 
intermediate product is shifted over to the correct bit position for the addition. For example, p0 is just m0q0; p1 is the 
sum of m1q0 and m0q1; p2 is the sum of m2q0, m1q1 and m0q2; and so on. The four full adders (1-bit adders) in each 
row are connected, as in the ripple-carry adder with each carry-out signal connected to the carry-in of the next full 
adder. The carry-out of the last full adder is connected to the input of the last full adder in the row below. The last 
carry-out from the last row of adders is the value for p7 of the final product. As in the ripple-carry adder, all of the 
initial carry-ins, c0, are set to a 0. 

Multiplicand (M)  1 1 0 1    m3 m2 m1 m0 

Multiplier (Q)       ×  1 0 1 1     ×  q3 q2 q1 q0 
   1 1 0 1    m3q0 m2q0 m1q0 m0q0 
 Intermediate products  1 1 0 1      m3q1 m2q1 m1q1 m0q1 
   0 0 0 0        m3q2 m2q2 m1q2 m0q2 
   +  1 1 0 1          +   m3q3 m2q3 m1q3 m0q3    
Product (P)  1 0 0 0 1 1 1 1 p7 p6 p5 p4 p3 p2 p1 p0 

 (a) 

p0p1p2p3p4p5p6p7

++++ 0

++++ 0

++++ 0

0

m3 q3 m2 q3 m1 q3 m0 q3

m3 q2 m2 q2 m1 q2 m0 q2

m3 q1 m2 q1 m1 q1 m0 q1

m3 q0 m2 q0 m1 q0 m0 q0

 

(b) 

Figure 4.34 Multiplication: (a) method; (b) circuit. 
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4.14 Summary Checklist 

 Full adder 
 Ripple-carry adder 
 Carry-lookahead adder 
 Two’s complement 
 Sign extension 
 Subtractor 
 Arithmetic logic unit (ALU) 
 Arithmetic extender (AE) 
 Logic extender (LE) 
 Carry extender (CE) 
 Decoder 
 Encoder 
 Priority encoder 
 Multiplexer (MUX) 
 Tri-state buffer 
 Z value 
 Comparator 
 Shifter 
 Barrel Shifter 
 Multiplier 
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4.15 Problems 

4.1. Convert the following numbers to 12-bit binary numbers using two’s complement representation. 
a) 23410 
b) –23410 
c) 2348 
d) BC416 
e) –47210  

4.2. Convert the following two’s complement binary numbers to decimal, octal, and hexadecimal formats. 
a) 1001011 
b) 011110 
c) 101101 
d) 1101011001 
e) 0110101100 

4.3. Write the complete structural VHDL code for the full adder circuit shown in Figure 4.1(c). 

4.4. Draw the smallest possible complete circuit for a 2-bit carry-lookahead adder. 

4.5. Draw the complete circuit for a 4-bit carry-lookahead adder. 

4.6. Derive the carry-lookahead equation and circuit for c5. 

4.7. Show that when adding two n-bit signed numbers, An-1…A0 and Bn-1…B0, producing the result, Sn-1…S0, the 
Signed_Overflow flag can be deduced by the equation: 

Signed_Overflow = An-1 XOR Bn-1 XOR Sn-1 XOR Sn 

4.8. Draw the complete 4-bit ALU circuit having the following operations. Use K-maps to reduce all of the 
equations to standard form. 

 
s2 s1 s0 Operations 
0 0 0 B – 1 
0 0 1 A NOR B 
0 1 0 A – B 
0 1 1 A XNOR B 
1 0 0 1 
1 0 1 A NAND B 
1 1 0 A + B 
1 1 1 A' 

4.9. Draw the complete 4-bit ALU circuit having the following operations. Don’t-care values are assigned to unused 
select combinations. Use K-maps to reduce all of the equations to standard form. 

 
s2 s1 s0 Operations 
0 0 0 Pass A through the LE 
0 0 1 Pass B through the LE 
0 1 0 NOT A 
0 1 1 NOT B 
1 0 0 A – B 
1 0 1 B – A 
1 1 0 B + 1 
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4.10. Draw the complete 4-bit ALU circuit having the following operations. Use K-maps to reduce all of the 
equations to standard form. 

 
s2 s1 s0 Operations 
0 0 0 A plus B 
0 0 1 Increment A 
0 1 0 Increment B 
0 1 1 Pass A 
1 0 0 A – B 
1 0 1 A XOR B 
1 1 0 A AND B 

4.11. Draw the complete 4-bit ALU circuit having the following operations. Use K-maps to reduce all of the 
equations to standard form. 

 
s2 s1 s0 Operations 
0 0 0 Pass A 
0 0 1 Pass B through the AE 
0 1 0 A plus B 
0 1 1 A' 
1 0 0 A XOR B 
1 0 1 A NAND B 
1 1 0 A – 1 
1 1 1 A – B 

 
4.12. Given the following K-maps for the LE, AE, and CE of an ALU, determine the ALU operations assigned to 

each of the select line combinations. 

s1s0

aibi s2 = 1

00

1 1 1

1 1

1 1

01 11 10

00

s2 = 0

1

00
1

1

1 1

1 1

01 11 10

01

11

10

LE

  

s2bi
s1s0

00 1 1

00

1 1

01 11 10

01

11

10

AE

  

s1s0
s2

0

00
1

1

01 11 10

1

CE

 
 

4.13. A four-function ALU has the following equations for its LE, AE, and CE: 

xi = ai + s1's0bi 

yi = s1's0' + s1s0bi' 

c0 = s1s0 

Determine the four functions in the correct order that are implemented in this ALU. Show all of your work. 
 

4.14. Draw the circuit for the 2-to-4 decoder. 

4.15. Derive the truth table for a 3-to-8 decoder using negative logic. 

4.16. Draw the circuit for the 4-to-16 decoder using only 2-to-4 decoders. 

4.17. Draw the circuit for the 4-to-2 priority encoder using only 2-input AND, 2-input OR, and NOT gates. 
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4.18. Draw the circuit for an 8-to-3 priority encoder. 
4.19. Draw the circuit for the 4-to-2 priority encoder using only 2-to-1 priority encoders and 2-to-1 multiplexers. 
4.20. Write the behavioral VHDL code for the 8-to-3 priority encoder. 
4.21. Draw the circuit for a 16-to-1 multiplexer using only 4-to-1 multiplexers. 
4.22. Draw the circuit for a 16-to-1 multiplexer using only 2-to-1 multiplexers. 
4.23. Use only 2-to-1 multiplexers to implement the function: f(w,x,y,z) = Σ(0,2,5,7,13,15). 
4.24. Use only 2-to-1 multiplexers (as many as you need) to implement the function: F(x, y, z)  = Π(0, 3, 4, 5, 7). 
4.25. Use one 8-to-1 multiplexer to implement the function: F(x,y,z) = Σ(0,3,4,6,7). 
4.26. Use 2-to-1 multiplexers to implement the function: F(x,y,z) = Σ(0,2,4,5). 
4.27. Derive the truth table for comparing two unsigned 2-bit operands for the less-than-or-equal-to relationship. 

Derive the equation and circuit from this truth table. 
4.28. Construct the circuit for one bit slice of an n-bit magnitude comparator that compares xi ≥ yi. 
4.29. Draw the circuit for a 4-bit iterative comparator that tests for the greater-than-or-equal-to relationship. 
4.30. Draw the circuit for a 4-bit shifter that realizes the following operation table: 
 

s2 s1 s0 Operation 
0 0 0 Pass through 
0 0 1 Rotate left 
0 1 0 Shift right and fill with 1 
0 1 1 Not used 
1 0 0 Shift left and fill with 0 
1 0 1 Pass through 
1 1 0 Rotate right 
1 1 1 Shift right and fill with 0 

 
4.31. Draw a 4-bit shifter circuit for the following operational table. Use only the basic gates AND, OR, and NOT (i.e. 

do not use multiplexers). 
 

s1 s0 Operation 
0 0 Shift left fill with 0 
0 1 Shift right fill with 0 
1 0 Rotate left 
1 1 Rotate right 

 
4.32. Draw a 4-bit shifter circuit for the following operation table using only six 2-to-1 multiplexers. 
 

Operation 
Shift left fill with 0 
Shift right fill with 0 
Rotate left 
Rotate right 

4.33. Derive the truth table for the following combinational circuit. Write also the operation name for each row in 
the table. 
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4.34. Draw a 4-bit barrel shifter circuit for the rotate right operation. 
4.35. Draw the complete detail circuit diagram for the 4-bit multiplier based on the circuit shown in Figure 4.34(b). 
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Index 

 
2's complement. See Two's complement 

A 

Active-high, 3 
Active-low, 3 
Adder, 3, 11 

carry-lookahead, 6 
full, 3 
ripple-carry, 5 

AE. See Arithmetic logic unit. 
ALU. See Arithmetic logic unit. 
Arithmetic extender. See Arithmetic logic unit. 
Arithmetic logic unit, 13 

AE arithmetic extender, 13 
CE carry extender, 14 
LE logic extender, 13 

Assert, 3 

B 

Barrel shifter, 31 

C 

Carry extender. See Arithmetic logic unit. 
Carry-lookahead adder, 6 
CE. See Arithmetic logic unit. 
Combinational components, 3 
Comparator, 26 

D 

De-assert, 3 
Decoder, 18 
Demultiplexer, 18 

E 

Encoder, 20 
priority, 20 

F 

FA. See Full adder. 
Full adder, 3 

I 
Iterative circuit, 27 

L 

LE. See Arithmetic logic unit. 
Logic extender. See Arithmetic logic unit. 

M 

Multiplexer, 21 
Multiplier, 31 
MUX. See Multiplexer. 

N 

Negative binary numbers, 7 
Negative logic, 3 

P 

Positive logic, 3 
Priority encoder, 20 

R 

Ripple-carry adder, 5 
Rotating bits, 29 
Rotator, 29 

S 

Shifter, 29 
Shifting bits, 29 
Sign extension, 9 
Subtractor, 3, 9, 11 

T 

Tri-state buffer, 24 
Two’s-complement, 7 

V 

VHDL code 
3-to-8 decoder, 19 
4-to-1 multiplexer, 24 
adder/subtractor, 13 
arithmetic logic unit (ALU), 17 
full adder, 5 
shifter, 31 
tri-state buffer, 26 

 


