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Digital circuits, regardless of whether they are part of the control unit or the datapath, are classified as either 
one of two types: combinational or sequential. Combinational circuits are the class of digital circuits where the 
outputs of the circuit are dependent only on the current inputs. In other words, a combinational circuit is able to 
produce an output simply from knowing what the current input values are. Sequential circuits, on the other hand, 
are circuits whose outputs are dependent on not only the current inputs, but also on all of the past inputs. Therefore, 
in order for a sequential circuit to produce an output, it must know the current input and all past inputs. Because of 
their dependency on past inputs, sequential circuits must contain memory elements in order to remember the history 
of past input values. Combinational circuits do not need to know the history of past inputs, and therefore, do not 
require any memory elements. A “large” digital circuit may contain both combinational circuits and sequential 
circuits. However, regardless of whether it is a combinational circuit or a sequential circuit, it is nevertheless a 
digital circuit, and so they use the same basic building blocks—the AND, OR, and NOT gates.  What makes them 
different is in the way the gates are connected. 

The car security system from Section 2.9 is an example of a combinational circuit. In the example, the siren is 
turned on when the master switch is on and someone opens the door. If you close the door then the siren will turn off 
immediately. With this setup, the output, which is the siren, is dependent only on the inputs, which are the master 
and door switches. For the security system to be more useful, the siren should remain on even after closing the door 
after it is first triggered. In order to add this new feature to the security system, we need to modify it so that the 
output is not only dependent on the master and door switches, but also dependent on whether the door has been 
opened previously or not. A memory element is needed in order to remember whether the door previously was 
opened or not, and this results in a sequential circuit. 

In this and the next chapter, we will look at the design of combinational circuits. In this chapter, we will look at 
the analysis and design of general combinational circuits. Chapter 4 will look at the design of specific combinational 
components. Some sample combinational circuits in our microprocessor road map include the next-state logic and 
output logic in the control unit, and the multiplexer, ALU, comparator, and tri-state buffer in the datapath. We will 
leave the design of sequential circuits for a later chapter. 

In addition to being able to design a functionally correct circuit, we would also like to be able to optimize the 
circuit in terms of size, speed, and power consumption. Usually, reducing the circuit size will also increase the speed 
and reduce the power usage. In this chapter, we will look only at reducing the circuit size. Optimizing the circuit for 
speed and power usage is beyond the scope of this book. 

3.1 Analysis of Combinational Circuits 

Very often, we are given a digital logic circuit, and we would like to know the operation of the circuit. The 
analysis of combinational circuits is the process in which we are given a combinational circuit, and we want to 
derive a precise description of the operation of the circuit. In general, a combinational circuit can be described 
precisely either with a truth table or with a Boolean function. 

3.1.1 Using a Truth Table 

For example, given the combinational circuit of Figure 3.1, we want to derive the truth table that describes the 
circuit. We create the truth table by first listing all of the inputs found in the circuit, one input per column, followed 
by all of the outputs found in the circuit. Hence, we start with a table with four columns: three columns (x, y, z) for 
the inputs, and one column (f) for the output, as shown in Figure 3.2(a). 
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Figure 3.1 Sample combinational circuit. 
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(d) 
 

x y z f 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

(e) 

Figure 3.2 Deriving the truth table for the sample circuit in Figure 3.1: (a) listing the input and output columns; (b) 
enumerating all possible combinations of the three input values; (c) circuit annotated with the input values xyz = 
000; (d) circuit annotated with the input values xyz = 001; (e) complete truth table for the circuit. 
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The next step is to enumerate all possible combinations of 0’s and 1’s for all of the input variables. In general, 
for a circuit with n inputs, there are 2n combinations, from 0 to 2n – 1. Continuing on with the example, the table in 
Figure 3.2(b) lists the eight combinations for the three variables in order. 

Now, for each row in the table (that is, for each combination of input values), we need to determine what the 
output value is. This is done by substituting the values for the input variables and tracing through the circuit to the 
output. For example, using xyz = 000, the outputs for all of the AND gates are 0, and ORing all the zeros gives a zero. 
Therefore, f = 0 for this set of values for x, y, and z. This is shown in the annotated circuit in Figure 3.2(c). 

For xyz = 001, the output of the top AND gate gives a 1, and 1 ORed with anything gives a 1; therefore, f = 1, as 
shown in the annotated circuit in Figure 3.2(d). 

Continuing in this fashion for all of the input combinations, we can complete the final truth table for the circuit, 
as shown in Figure 3.2(e). 

A faster method for evaluating the values for the output signals is to work backwards, that is, to trace the circuit 
from the output back to the inputs. You want to ask the question: When is the output a 1 (or a 0)? Then trace back to 
the inputs to see what the input values ought to be in order to get the 1 output. For example, using the circuit in 
Figure 3.1, f is a 1 when any one of the four OR-gate inputs is a 1. For the first input of the OR gate to be a 1, the 
inputs to the top AND gate must be all 1’s. This means that the values for x, y, and z must be 0, 0, and 1, respectively. 
Repeat this analysis with the remaining three inputs to the OR gate. What you will end up with are the four input 
combinations for which f is a 1. The remaining input combinations, of course, will produce a 0 for f. 

Example 3.1: Deriving a truth table from a circuit diagram 

Derive the truth table for the following circuit with three inputs, A, B and C, and two outputs, P and Q: 

A B C

P

Q
 

The truth table will have three columns for the three inputs and two columns for the two outputs. Enumerating 
all possible combinations of the three input values gives eight rows in the table. For each combination of input 
values, we need to evaluate the output values for both P and Q. For P to be a 1, either of the OR-gate inputs must be 
a 1. The first input to this OR gate is a 1 if ABC = 001.  The second input to this OR gate is a 1 if AB = 11. Since C is 
not specified in this case, it means that C can be either a 0 or a 1. Hence, we get the three input combinations for 
which P is a 1, as shown in the following truth table under the P column. The rest of the input combinations will 
produce a 0 for P. For Q to be a 1, both inputs of the AND gate must be a 1. Hence, A must be a 0, and either B is a 0 
or C is a 1. This gives three input combinations for which Q is a 1, as shown in the truth table under the Q column. 
 

A B C P Q 
0 0 0 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 1 0 1 
1 0 0 0 0 
1 0 1 0 0 
1 1 0 1 0 
1 1 1 1 0 

    ♦ 
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3.1.2 Using a Boolean Function 

To derive a Boolean function that describes a combinational circuit, we simply write down the Boolean logical 
expression at the output of each gate (instead of substituting actual values of 0’s and 1’s for the inputs) as we trace 
through the circuit from the primary input to the primary output. Using the sample combinational circuit of Figure 
3.1, we note that the logical expression for the output of the top AND gate is x'y'z. The logical expressions for the 
remaining AND gates are, respectively x'yz, xy'z, and xyz. Finally, the outputs from these AND gates are all ORed 
together. Hence, we get the final expression 

 f = x'y'z + x'yz + xy'z + xyz 

To help keep track of the expressions at the output of each logic gate, we can annotate the outputs of each logic 
gate with the resulting logical expression as shown here. 

x y z

f

x'y'z

x'yz

xy'z

xyz

x'y'z + x'yz + xy'z + xyz

x' y'

 
If we substitute all possible combinations of values for all of the variables in the final equation, we should 

obtain the same truth table as before. 

Example 3.2: Deriving a Boolean function from a circuit diagram 

Derive the Boolean function for the following circuit with three inputs, x, y, and z, and one output, f. 

x y z

f
 

Starting from the primary inputs x, y, and z, we annotate the outputs of each logic gate with the resulting logical 
expression. Hence, we obtain the annotated circuit: 

x y z

y' xy'

y ⊕ zx'
xy' + (y ⊕ z)

f = x' (xy' + (y ⊕ z))
 

The Boolean function for the circuit is the final equation f = x' (xy' + (y ⊕ z)) at the output of the circuit. ♦ 

If a circuit has two or more outputs, then there must be one equation for each of the outputs. The equations are 
derived totally independent of each other. 
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3.2 Synthesis of Combinational Circuits 

Synthesis of combinational circuits is just the reverse procedure of the analysis of combinational circuits. In 
synthesis, we start with a description of the operation of the circuit. From this description, we derive either the truth 
table or the Boolean logical function that precisely describes the operation of the circuit. Once we have either the 
truth table or the logical function, we can easily translate that into a circuit diagram. 

For example, let us construct a 3-bit comparator circuit that outputs a 1 if the number is greater than or equal to 
5 and outputs a 0 otherwise. In other words, construct a circuit that outputs a 0 if the input is a number between 0 
and 4 (inclusive) and outputs a 1 if the input is a number between 5 and 7 (inclusive). The reason why the maximum 
number is 7 is because the range for an unsigned 3-bit binary number is from 0 to 7. Hence, we can use the three 
bits, x2, x1, and x0, to represent the 3-bit input value to the comparator. From the description, we obtain the following 
truth table: 

 
Decimal Binary number Output 
number x2 x1 x0 f 

0 0 0 0 0 
1 0 0 1 0 
2 0 1 0 0 
3 0 1 1 0 
4 1 0 0 0 
5 1 0 1 1 
6 1 1 0 1 
7 1 1 1 1 

In constructing the circuit, we are interested only in when the output is a 1 (i.e., when the function f is a 1). 
Thus, we only need to consider the rows where the output function f = 1. From the previous truth table, we see that 
there are three rows where f = 1, which give the three AND terms x2x1'x0, x2x1x0', and x2x1x0. Notice that the variables 
in the AND terms are such that it is inverted if its value is a 0, and not inverted if its value is a 1. In the case of the 
first AND term, we want f = 1 when x2 = 1 and x1 = 0 and x0 = 1; and this is satisfied in the expression x2x1'x0. 
Similarly, the second and third AND terms are satisfied in the expressions x2x1x0' and x2x1x0, respectively. Finally, we 
want f = 1 when either one of these three AND terms is equal to 1. So we ORed the three AND terms together, giving 
us our final expression: 

 f = x2x1'x0 + x2x1x0' + x2x1x0 (3.1) 

In drawing the schematic diagram, we simply convert the AND operators to AND gates, OR operators to OR gates, 
and primes to NOT gates. The equation is in the sum-of-products format, meaning that it is summing (ORing) the 
product (AND) terms. A sum-of-products equation translates to a two-level circuit with the first level being made up 
of AND gates and the second level made up of OR gates. Each of the three AND terms contains three variables, so we 
use a 3-input AND gate for each of the three AND terms. The three AND terms are ORed together, so we use a 3-input 
OR gate to connect the output of the three AND gates. For each inverted variable, we need an inverter. The schematic 
diagram derived from Equation 3.1 is shown here. 

x2 x1 x0

f

 
From this discussion we see that any combinational circuit can be constructed using only AND, OR, and NOT 

gates from either a truth table or a Boolean equation. 

Example 3.3: Synthesizing a combinational circuit from a truth table 
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Synthesize a combinational circuit from the following truth table. The three variables, a, b, and c, are input 
signals, and the two variables, x, and y, are output signals. 

 
a b c x y 
0 0 0 1 0 
0 0 1 0 0 
0 1 0 1 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 1 
1 1 0 1 0 
1 1 1 0 0 

We either can derive the Boolean equation from the truth table and then derive the circuit from the equation, or 
we can derive the circuit directly from the truth table. For this example, we first will derive the Boolean equation. 
Since there are two output signals, there will be two equations; one for each output signal. 

From Section 2.6, we saw that a function is formed by summing its 1-minterms. For output x, there are five 1-
minterms: m0, m2, m3, m5, and m6. These five minterms represent the five AND terms, a'b'c', a'bc', a'bc, ab'c, and 
abc'. Hence, the equation for x is 

 x = a'b'c' + a'bc' + a'bc + ab'c + abc' 

Similarly, the output signal y has three 1-minterms, and they are a'bc', ab'c', and ab'c. Hence, the equation for y 
is 

 y = a'bc' + ab'c' + ab'c 

The combinational circuit constructed from these two equations is shown in Figure 3.3(a). Each 3-variable AND 
term is replaced by a 3-input AND gate. The three inputs to these AND gates are connected to the three input variables 
a, b, and c, either directly if the variable is not primed or through a NOT gate if the variable is primed. For output x, a 
5-input OR gate is used to connect the outputs of the five AND gates for the corresponding five AND terms. For output 
y, a 3-input OR gate is used to connect the outputs of the three AND gates. 

Notice that the two AND terms, a'bc', and ab'c, appear in both the x and the y equations. As a result, we do not 
need to generate these two signals twice. Hence, we can reduce the size of the circuit by not duplicating these two 
AND gates, as shown in Figure 3.3(b). ♦ 

 

a b c

x

y

 

(a) 

a b c

x

y

 

(b) 

Figure 3.3 Combinational circuit for Example 3.3: (a) no reduction; (b) with reduction. 
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3.3 * Technology Mapping 

To reduce implementation cost and turnaround time to produce a digital circuit on an IC, designers often make 
use of off-the-shelf semi-custom gate arrays. Many gate arrays are ICs that have only NAND gates or NOR gates built 
in them, but their input and output connections are not yet connected. To use these gate arrays, a designer simply has 
to specify where to make these connections between the gates. The problem here is that, when we use these gate 
arrays to implement a circuit, we need to convert all AND, OR, and NOT gates in the circuit to use only NAND or NOR 
gates, depending on what is available in the gate array. In addition, these NAND and NOR gates usually have the same 
number of fixed inputs, for example, only three inputs. 

In Section 3.2, we saw that any combinational circuit can be constructed with only AND, OR, and NOT gates. It 
turns out that any combinational circuit can also be constructed with either only NAND gates or only NOR gates. The 
reason why we want to use only NAND or NOR gates will be made clear when we look at how these gates are built at 
the transistor level in Chapter 5. We will now look at how a circuit with AND, OR, and NOT gates is converted to one 
with only NAND or only NOR gates. 

The conversion of any given circuit to use only 2-input NAND or 2-input NOR gates is possible by observing the 
following equalities. These equalities, in fact, are obtained from the Boolean algebra theorems from Chapter 2. 

Rule 1: x' ' = x (double NOT) 

Rule 2: x' = (x • x)' = (x • 1)'  (NOT to NAND) 

Rule 3: x' = (x + x)' = (x + 0)'  (NOT to NOR) 

Rule 4: xy = ((xy)')' (AND to NAND) 

Rule 5: x + y = ((x + y)')' = (x' y' )'  (OR to NAND) 

Rule 6: xy = ((xy)')' = (x' + y')'  (AND to NOR) 

Rule 7: x + y = ((x + y)')'  (OR to NOR) 

Rule 1 simply says that a double inverter can be eliminated altogether. Rules 2 and 3 convert a NOT gate to a 
NAND gate or a NOR gate, respectively. For both Rules 2 and 3, there are two ways to convert a NOT gate to either a 
NAND gate or a NOR gate. For the first method, the two inputs are connected in common. For the second method, one 
input is connected to the logic 1 for the NAND gate and to 0 for the NOR gate. Rule 4 applies Rule 1 to the AND gate. 
The resulting expression gives us a NAND gate followed by a NOT gate. We can then use Rule 2 to change the NOT 
gate to a NAND gate. Rule 5 changes an OR gate to use two NOT gates and a NAND gate by first applying Rule 1 and 
then De Morgan’s theorem. Again, the two NOT gates can be changed to two NAND gates using Rule 2. Similarly, 
Rule 6 converts an AND gate to use two NOT gates and a NOR gate, and Rule 7 converts an OR gate to a NOR gate 
followed by a NOT gate. 

In a circuit diagram, these rules are translated to the equivalent circuits, as shown in Figure 3.4. Rules 2, 4, and 
5 are used if we want to convert a circuit to use only 2-input NAND gates; whereas, Rules 3, 6, and 7 are used if we 
want to use only 2-input NOR gates.  
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Rule 1: =

Rule 2: = =
1

Rule 3: = =
0

Rule 4: = =

Rule 5: = =

Rule 6: = =

Rule 7: = =
 

Figure 3.4 Circuits for converting from AND, OR, and NOT gates to NAND or NOR gates. 

Another thing that we might want is to get the functionality of a 2-input NAND or 2-input NOR gate from a 3-
input NAND or 3-input NOR gate, respectively. In other words, we want to use a 3-input NAND or NOR gate to work 
like a 2-input NAND or NOR gate, respectively. On the other hand, we might also want to get the reverse of that (that 
is, to get the functionality of a 3-input NAND or 3-input NOR gate from a 2-input NAND or 2-input NOR gate, 
respectively). These equalities are shown in the following rules and their corresponding circuits in Figure 3.5. 

Rule 8: (x • y)' = (x • y • y)'   (2-input to 3-input NAND) 

Rule 9: (x + y)' = (x + y + y)'   (2-input to 3-input NOR) 

Rule 10: (abc)' = ((ab) c)'  = ((ab)'' c)'   (3-input to 2-input NAND) 

Rule 11: (a+b+c)' = ((a+b) + c)' = ((a+b)'' + c)'   (3-input to 2-input NOR) 

Rule 8 converts from a 2-input NAND gate to a 3-input NAND gate. Rule 9 converts from a 2-input NOR gate to a 
3-input NOR gate. Rule 10 converts from a 3-input NAND gate to using only 2-input NAND gates. Rule 11 converts 
from a 3-input NOR gate to using only 2-input NOR gates. Notice that for Rules 10 and 11, an extra NOT gate is 
needed in between the two gates. 
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Rule 8: =

Rule 9: =

Rule 10: = =

Rule 11: = =
 

Figure 3.5 Circuits for converting 2-input to 3-input NAND or NOR gate and vice versa. 

Example 3.4: Converting a circuit to use only 3-input NAND gates 

Convert the following circuit to use only 3-input NAND gates. 

x y z

f

 

First, we need to change the 4-input OR gate to a 3- and 2-input OR gates. 

x y z

f

 

Then we will use Rule 4 to change all of the AND gates to 3-input NAND gates with inverters and Rule 5 to 
change all of the OR gates to 3-input NAND gates with inverters. The 2-input NAND gates are replaced with 3-input 
NAND gates with two of its inputs connected together. 

x y z

f

add dots 
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Finally, we eliminate all the double inverters and replace the remaining inverters with NAND gates with their 
inputs connected together. 

 

x y z

f

 ♦ 

3.4 Minimization of Combinational Circuits 

When constructing digital circuits, in addition to obtaining a functionally correct circuit, we like to optimize 
them in terms of circuit size, speed, and power consumption. In this section, we will focus on the reduction of circuit 
size. Usually, by reducing the circuit size, we will also improve on speed and power consumption. We have seen in 
the previous sections that any combinational circuit can be represented using a Boolean function. The size of the 
circuit is proportional directly to the size or complexity of the functional expression. In fact, it is a one-to-one 
correspondence between the functional expression and the circuit size. In Section 2.5.1, we saw how we can 
transform a Boolean function to another equivalent function by using the Boolean algebra theorems. If the resulting 
function is simpler than the original, then we want to implement the circuit based on the simpler function, since that 
will give us a smaller circuit size. 

Using Boolean algebra to transform a function to one that is simpler is not an easy task, especially for the 
computer. There is no formula that says which is the next theorem to use. Luckily, there are easier methods for 
reducing Boolean functions. The Karnaugh map method is an easy way for reducing an equation manually and is 
discussed in Section 3.4.1. The Quine-McCluskey or tabulation method for reducing an equation is ideal for 
programming the computer and is discussed in Section 3.4.3. 

3.4.1 Karnaugh Maps 

To minimize a Boolean equation in the sum-of-products form, we need to reduce the number of product terms 
by applying the Combining Boolean theorem (Theorem 14) from Section 2.5.1. In so doing, we also will have 
reduced the number of variables used in the product terms. For example, given the following 3-variable function: 

 F = xy'z' + xyz'  

we can factor out the two common variables xz' and reduce it to 

 F = xz' (y' + y) 
  = xz' 1 
  = xz' 

In other words, two product terms that differ by only one variable, whose value is a 0 (primed) in one term and 
a 1 (unprimed) in the other term, can be combined together to form just one term with that variable omitted, as 
shown in the previous equations. Thus, we have reduced the number of product terms, and the resulting product term 
has one less variable. By reducing the number of product terms, we reduce the number of OR operators required, and 
by reducing the number of variables in a product term, we reduce the number of AND operators required. 

Looking at a logic function’s truth table, sometimes it is difficult to see how the product terms can be combined 
and minimized. A Karnaugh map (K-map for short) provides a simple and straightforward procedure for 
combining these product terms. A K-map is just a graphical representation of a logic function’s truth table, where 
the minterms are grouped in such a way that it allows one to easily see which of the minterms can be combined. The 
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K-map is a two-dimensional array of squares, each of which represents one minterm in the Boolean function. Thus, 
the map for an n-variable function is an array with 2n squares. 

Figure 3.6 shows the K-maps for functions with 2, 3, 4, and 5 variables. Notice the labeling of the columns and 
rows are such that any two adjacent columns or rows differ in only one bit change. This condition is required 
because we want minterms in adjacent squares to differ in the value of only one variable or one bit, and so these 
minterms can be combined together. This is why the labeling for the third and fourth columns and for the third and 
fourth rows are always interchanged. When we read K-maps, we need to visualize them as such that the two end 
columns or rows wrap around, so that the first and last columns and the first and last rows are really adjacent to each 
other, because they also differ in only one bit. 

In Figure 3.6, the K-map squares are annotated with their minterms and minterm numbers for easy reference 
only. For example, in Figure 3.6(a) for a 2-variable K-map, the entry in the first row and second column is labeled 
x'y and annotated with the number 1. This is because the first row is when the variable x is a 0, and the second 
column is when the variable y is a 1. Since, for minterms, we need to prime a variable whose value is a 0 and not 
prime it if its value is a 1, this entry represents the minterm x'y, which is minterm number 1. Be careful that, if we 
label the rows and columns differently, the minterms and the minterm numbers will be in different locations. When 
we use K-maps to minimize an equation, we will not write these in the squares. Instead, we will be putting 0’s and 
1’s in the squares. 

For a 5-variable K-map, as shown in Figure 3.6(d), we need to visualize the right half of the array (where v = 1) 
to be on top of the left half (where v = 0). In other words, we need to view the map as three-dimensional. Hence, 
although the squares for minterms 2 and 16 are located next to each other, they are not considered to be adjacent to 
each other. On the other hand, minterms 0 and 16 are adjacent to each other, because one is on top of the other. 

1

x'y' x'y

xy' xy

0

0

1

y
x

0 1

2 3
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Figure 3.6 Karnaugh maps for: (a) 2 variables; (b) 3 variables; (c) 4 variables; (d) 5 variables. 

Given a Boolean function, we set the value for each K-map square to either a 0 or a 1, depending on whether 
that minterm for the function is a 0-minterm or a 1-minterm, respectively. However, since we are only interested in 
using the 1-minterms for a function, the 0’s are sometimes not written in the 0-minterm squares. 

For example, the K-map for the 2-variable function: 
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 F = x'y' + x'y + xy 
is 

x

0 1 1

0

1

1
0 1

2 3
1

F y

y

x'

 
The 1-minterms, m0 (x'y') and m1 (x'y), are adjacent to each other, which means that they differ in the value of 

only one variable. In this case, x is 0 for both minterms, but for y, it is a 0 for one minterm and a 1 for the other 
minterm. Thus, variable y can be dropped, and the two terms are combined together giving just x'. The prime in x' is 
because x is 0 for both minterms. This reasoning corresponds with the expression: 

 x'y' + x'y = x' (y' + y) = x' (1) = x' 

Similarly, the 1-minterms m1 (x'y) and m3 (xy) are also adjacent, and y is the variable having the same value for 
both minterms, and so they can be combined to give  

 x'y + xy = (x' + x) y = (1) y = y 

We use the term subcube to refer to a rectangle of adjacent 1-minterms. These subcubes must be rectangular in 
shape and can only have sizes that are powers of two. Formally, for an n-variable K-map, an m-subcube is defined as 
that set of 2m minterms in which n – m of the variables will have the same value in every minterm, while the 
remaining variables will take on the 2m possible combinations of 0’s and 1’s. Thus, a 1-minterm all by itself is called 
a 0-subcube, two adjacent 1-minterms is called a 1-subcube, and so on. In the previous 2-variable K-map, there are 
two 1-subcubes: one labeled with x' and one labeled with y. 

A 2-subcube will have four adjacent 1-minterms and can be in the shape of any one of those shown in Figure 
3.7(a) through (e). Notice that Figure 3.7(d) and (e) also form 2-subcubes, even though the four 1-minterms are not 
physically adjacent to each other. They are considered to be adjacent because the first and last rows and the first and 
last columns wraparound in a K-map. In Figure 3.7(f), the four 1-minterms cannot form a 2-subcube, because even 
though they are physically adjacent to each other, they do not form a rectangle. However, they can form three 1-
subcubes—y'z, x'y' and x'z. 

We say that a subcube is characterized by the variables having the same values for all of the minterms in that 
subcube. In general, an m-subcube for an n-variable K-map will be characterized by n – m variables. If the value that 
is similar for all of the variables is a 1, that variable is unprimed; whereas, if the value that is similar for all of the 
variables is a 0, that variable is primed. In an expression, this is equivalent to the resulting smaller product term 
when the minterms are combined together. For example, the 2-subcube in Figure 3.7(d) is characterized by z', since 
the value of z is 0 for all of the minterms, whereas the values for x and y are not all the same for all of the minterms. 
Similarly, the 2-subcube in Figure 3.7(e) is characterized by x'z'. 
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Figure 3.7 Examples of K-maps with 2-subcubes: (a) and (b) 3-variable; (c) 4-variable; (d) 3-variable with 
wraparound subcube; (e) 4-variable with wraparound subcube; (f) four adjacent minterms that cannot form a 2-
subcube. 

For a 5-variable K-map, as shown in Figure 3.8, we need to visualize the right half of the array (where v = 1) to 
be on top of the left half (where v = 0). Thus, for example, minterm 20 is adjacent to minterm 4 since one is on top 
of the other, and they form the 1-subcube w'xy'z'. Even though minterm 6 is physically adjacent to minterm 20 on 
the map, they cannot be combined together, because when you visualize the right half as being on top of the left 
half, then they really are not on top of each other. Instead, minterm 6 is adjacent to minterm 4 because the columns 
wrap around, and they form the subcube v'w'xz'. Minterms 9, 11, 13, 15, 25, 27, 29, and 31 are all adjacent, and 
together they form the subcube wz. Now that we are viewing this 5-variable K-map in three dimensions, we also 
need to change the condition of the subcube shape to be a three-dimensional rectangle.  

You can see that this visualization becomes almost impossible to work with very quickly as we increase the 
number of variables. In more realistic designs with many more variables, tabular methods instead of K-maps are 
used for reducing the size of equations. 
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Figure 3.8 A 5-variable K-map with three wraparound subcubes. 

The K-map method reduces a Boolean function from its canonical form to its standard form. The goal for the K-
map method is to find as few subcubes as possible to cover all of the 1-minterms in the given function. This 
naturally implies that the size of the subcube should be as big as possible. The reasoning for this is that each subcube 
corresponds to a product term, and all of the subcubes (or product terms)  must be ORed together to get the function. 
Larger subcubes require fewer AND gates because of fewer variables in the product term, and fewer subcubes will 
require fewer inputs to the OR gate. 

The procedure for using the K-map method is as follows: 

1. Draw the appropriate K-map for the given function and place a 1 in the squares that correspond to the function’s 
1-minterms. 

2. For each 1-minterm, find the largest subcube that covers this 1-minterm. This largest subcube is known as a 
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prime implicant (PI). By definition, a prime implicant is a subcube that is not contained within any other 
subcube. If there is more than one subcube that is of the same size as the largest subcube, then they are all prime 
implicants. 

3. Look for 1-minterms that are covered by only one prime implicant. Since this prime implicant is the only 
subcube that covers this particular 1-minterm, this prime implicant must be in the final solution. This prime 
implicant is referred to as an essential prime implicant (EPI). By definition, an essential prime implicant is a 
prime implicant that includes a 1-minterm that is not included in any other prime implicant. 

4. Create a minimal cover list by selecting the smallest possible number of prime implicants such that every 1-
minterm is contained in at least one prime implicant. This cover list must include all of the essential prime 
implicants plus zero or more of the remaining prime implicants. It is acceptable that a particular 1-minterm is 
covered in more than one prime implicant, but all 1-minterms must be covered. 

5. The final minimized function is obtained by ORing all of the prime implicants from the minimal cover list. 

Note that the final minimized function obtained by the K-map method may not be in its most reduced form. It is 
only in its most reduced standard form. Sometimes, it is possible to reduce the standard form further into a non-
standard form. 

Example 3.5: Using K-map to minimize a 4-variable function 

Use the K-map method to minimize a 4-variable (w, x, y, and z) function F with the 1-minterms: m0, m2, m5, m7, 
m10, m13, m14, and m15. 

We start with the following 4-variable K-map with a 1 placed in each of the eight minterm squares: 
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The prime implicants for each of the 1-minterms are shown in the following K-map and table: 
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1-minterm Prime Implicant 
m0 w'x'z' 
m2 w'x'z', x'yz' 
m5 xz 
m7 xz 
m10 x'yz', wyz' 
m13 xz 
m14 wyz', wxy 
m15 xz  

For minterm m0, there is only one prime implicant w'x'z'. For minterm m2, there are two 1-subcubes that cover 
it, and they are the largest. Therefore, m2 has two prime implicants, w'x'z' and x'yz'. When we consider m14, again 
there are two 1-subcubes that cover it, and they are the largest. So m14 also has two prime implicants. Minterm m15, 
however, has only one prime implicant, xz. Although the 1-subcube wxy also covers m15, it is not a prime implicant 
for m15 because it is smaller than the 2-subcube xz. 
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From the K-map, we see that there are five prime implicants: w'x'z', x'yz', xz, wyz', and wxy. Of these five prime 
implicants, w'x'z' and xz are essential prime implicants, since m0 is covered only by w'x'z', and m5, m7, and m13 are 
covered only by xz. 

We start the cover list by including the two essential prime implicants w'x'z' and xz. These two subcubes will 
have covered the minterms m0, m2, m5, m7, m13, and m15. To cover the remaining two uncovered minterms, m10 and 
m14, we want to use as few prime implicants as possible. Hence, we select the prime implicant wyz', which covers 
both of them. 

Finally, our reduced standard-form equation is obtained by ORing the two essential prime implicants and one 
prime implicant in the cover list: 

F = w'x'z' + xz + wyz' 

Notice that we can reduce this standard form equation even further by factoring out the z' from the first and last 
term to get the nonstandard-form equation 

 F = z' (w'x' + wy) + xz ♦ 

Example 3.6: Using K-map to minimize a 5-variable function 

Use the K-map method to minimize a 5-variable function F (v, w, x, y and z) with the 1-minterms: v'w'x'yz', 
v'w'x'yz, v'w'xy'z, v'w'xyz, vw'x'yz', vw'x'yz, vw'xyz', vw'xyz, vwx'y'z, vwx'yz, vwxy'z, and vwxyz. 

First, we obtain the following K-map. 
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The list of prime implicants is: v'w'xz, w'x'y, w'yz, vw'y, vyz, and vwz. From this list of prime implicants, w'yz 
and vyz are not essential. The four remaining essential prime implicants are able to cover all of the 1-minterms. 
Hence, the solution in standard form is 

 F = v'w'xz + w'x'y + vw'y + vwz ♦ 

3.4.2 Don’t-cares 

There are times when a function is not specified fully. In other words, there are some minterms for the function 
where we do not care whether their values are a 0 or a 1. When drawing the K-map for these “don’t-care”  
minterms, we assign an “×” in that square instead of a 0 or a 1. Usually, a function can be reduced even further if we 
remember that these ×’s can be either a 0 or a 1. As you recall when drawing K-maps, enlarging a subcube reduces 
the number of variables for that term. Thus, in drawing subcubes, some of them may be enlarged if we treat some of 
these ×’s as 1’s. On the other hand, if some of these ×’s will not enlarge a subcube, then we want to treat them as 0’s 
so that we do not need to cover them. It is not necessary to treat all ×’s to be all 1’s or all 0’s.  We can assign some 
×’s to be 0’s and some to be 1’s. 

For example, given a function having the following 1-minterms and don’t-care minterms: 

1-minterms: m0, m1, m2, m3, m4, m7, m8, and m9 

×-minterms: m10, m11, m12, m13, m14, and m15 
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we obtain the following K-map with the prime implicants x', yz, and y'z'. 
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Notice that, in order to get the 4-subcube characterized by x', the two don’t-care minterms, m10 and m11, are 

taken to have the value 1. Similarly, the don’t-care minterms, m12 and m15, are assigned a 1 for the subcubes y'z' and 
yz, respectively. On the other hand, the don’t-care minterms, m13 and m14, are taken to have the value 0, so that they 
do not need to be covered in the solution. The reduced standard form function as obtained from the K-map is, 
therefore, 

 F = x' + yz + y'z' 

Again, this equation can be reduced further by recognizing that yz + y'z' = y  z. Thus,  

 F = x' + (y  z) 

3.4.3 * Tabulation Method 

K-maps are useful for manually obtaining the minimized standard-form Boolean function for maybe up to, at 
most, five variables. However, for functions with more than five variables, it becomes very difficult to visualize how 
the minterms should be combined into subcubes. Moreover, the K-map algorithm is not as straightforward for 
converting to a computer program. There are tabulation methods that are better suited for programming the 
computer, and thus, can solve any function given in canonical form having any number of variables. One tabulation 
method is known as the Quine-McCluskey method. 

Example 3.7: Illustrating the Quime-McCluskey algorithm 

We now illustrate the Quine-McCluskey algorithm using the same four-variable function from Example 3.5 and 
repeated here 

F(w, x, y, z) = Σ(0, 2, 5, 7, 10, 13, 14, 15) 

To construct the initial table, the minterms are grouped according to the number of 1’s in that minterm 
number’s binary representation. For example, m0 (0000) has no 1’s; m2 (0010) has one 1; m5 (0101) has two 1’s; etc. 
Thus, the initial table of 0-subcubes (i.e., subcubes having only one minterm) as obtained from the function stated 
above is 

 
Subcube Value Group Subcube 

Minterms w x y z 
Subcube 
Covered 

G0 m0 0 0 0 0  
G1 m2 0 0 1 0  
G2 m5 0 1 0 1  

 m10 1 0 1 0  
G3 m7 0 1 1 1  

 m13 1 1 0 1  
 m14 1 1 1 0  

G4 m15 1 1 1 1  

The “Subcube Covered” column is filled in from the next step. 

In Step 2, we construct a second table by combining those minterms in adjacent groups from the first table that 
differ in only one bit position, as shown next. For example, m0 and m2 differ in only the y bit. Therefore, in the 
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second table, we have an entry for the 1-subcube containing the two minterms, m0 and m2. A dash (–) is used in the 
bit position that is different in the two minterms. Since this 1-subcube covers the two individual minterms, m0 and 
m2, we make a note of it by checking these two minterms in the “Subcube Covered” column in the previous table. 
This process is equivalent to saying that the two minterms, m0 (w'x'y'z' ) and m2 (w'x'yz' ), can be combined together 
and are reduced to the one term, w'x'z'. The dash under the y column simply means that y can be either a 0 or a 1, 
and therefore, y can be discarded. Thus, this second table simply lists all of the 1-subcubes. Again, the “Subcube 
Covered” column in this second table will be filled in from the third step. 

 
Subcube Value Group Subcube 

Minterms w x y z 
Subcube 
Covered 

G0 m0,m2 0 0 – 0  
G1 m2,m10 – 0 1 0  
G2 m5,m7 0 1 – 1  

 m5,m13 – 1 0 1  
 m10,m14 1 – 1 0  

G3 m7,m15 – 1 1 1  
 m13,m15 1 1 – 1  
 m14,m15 1 1 1 –  

In Step 3, we perform the same matching process as before. We look for subcubes in adjacent groups that differ 
in only one bit position. In the matching, the dash must also match. These subcubes are combined to create the next 
subcube table. The resulting table, however, is a table containing 2-subcubes. From the above 1-subcube table, we 
get the following 2-subcube table: 

 
Subcube Value Group Subcube 

Minterms w x y z 
Subcube 
Covered 

G2 m5,m7,m13,m15 – 1 – 1  

From the 1-subcube table, subcubes m5m7 and m13m15 can be combined together to form the subcube 
m5m7m13m15 in the 2-subcube table, since they differ in only the w bit. Similarly, subcubes m5m13 and m7m15 from the 
1-subcube table can also be combined together to form the subcube, m5m7m13m15, because they differ in only the y 
bit. From both of these combinations, the resulting subcube is the same. Therefore, we have the four checks in the 1-
subcube table, but only one resulting subcube in the 2-subcube table. Notice that in the subcube m5m7m13m15, there 
are two dashes; one that is carried over from the Step 2, and one for where the bit is different from the current step. 

We continue to repeat the matching step as long as there are adjacent subcubes that differ in only one bit 
position. We stop when there are no more subcubes that can be combined. The prime implicants are those subcubes 
that are not covered, (i.e., those without a check mark in the “Subcube Covered” column). The only subcube in the 
2-subcube table does not have a check mark, and it has the value x = 1 and z = 1; thus, we get the prime implicant xz. 
The 1-subcube table has four subcubes that do not have a check mark; they are the four prime implicants: w'x'z', 
x'yz', wyz', and wxy. Note that these prime implicants may not be necessarily all in the last table. These five prime 
implicants (xz, w'x'z', x'yz', wyz', and wxy) are exactly the same as those obtained in Example 3.5. ♦ 

3.5 * Timing Hazards and Glitches 

As you probably know, things in practice don’t always work according to what you learn in school. Hazards and 
glitches in circuits are such examples of things that may go awry. In our analysis of combinational circuits, we have 
been performing only functional analysis. A functional analysis assumes that there is no delay for signals to pass 
from the input to the output of a gate. In other words, we look at a circuit only with respect to its logical operation as 
defined by the Boolean theorems. We have not considered the timing of the circuit. When a circuit is actually 
implemented, the timing of the circuit (that is, the time for the signals to pass from the input of a logic gate to the 
output) is very critical and must be treated with care. Otherwise, an actual implementation of the circuit may not 
work according to the functional analysis of the same circuit. Timing hazards are problems in a circuit as a result of 
timing issues. These problems can be observed only from a timing analysis of the circuit or from an actual 
implementation of the circuit. A functional analysis of the circuit will not reveal timing hazard problems. 
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A glitch is when a signal is expected to be stable (from a functional analysis), but it changes value for a brief 
moment and then goes back to what it is expected to be. For example, if a signal is expected to be at a stable 0, but 
instead, it goes up to a 1 and then drops back to a 0 very quickly. This sudden, unexpected transition of the signal is 
a glitch, and the circuit having this behavior contains a hazard. 

Take, for example, the simple 2-to-1 multiplexer circuit shown in Figure 3.9(a). Let us assume that both d0 and 
d1 are at a constant 1 and that s goes from a 1 to a 0. For a functional analysis of the circuit, the output y should 
remain at a constant 1. However, if we perform a timing analysis of the circuit, we will see something different in 
the timing diagram. Let us assume that all of the logic gates in the circuit have a delay of one time unit. The 
resulting timing trace is shown in Figure 3.9(b). At time t0, s drops to a 0. Since it takes one time unit for s to be 
inverted through the inverter, s' changes to a 1 after one time unit at time t1. At the same time, it takes the bottom 
AND gate one time unit for the output sd1 to change to a 0 at time t1. However, the top AND gate will not see any 
input change until time t1, and when it does, it takes another one time unit for its output s'd0 to rise to a 1 at time t2. 
Starting at time t1, both inputs of the OR gate are 0, so after one time unit, the OR gate outputs a 0 at time t2. At time 
t2, when the top AND gate outputs a 1, the OR gate will take this 1 input and outputs a 1 after one time unit at t3. So 
between times t2 and t3, output y unexpectedly drops to a 0 for one time unit and then rises back to a 1. Hence, the 
output signal y has a glitch, and the circuit has a hazard. 

As you may have noticed, glitches in a signal are caused by multiple sources having paths of different delays 
driving that signal. These types of simple glitches can be solved easily using K-maps. A glitch generally occurs if, 
by simply changing one input, we have to go out of one prime implicant in a K-map and into an adjacent one (i.e., 
moving from one subcube to another). The glitch can be eliminated by adding an extra prime implicant, so that when 
going from one prime implicant to the adjacent one, we remain inside the third prime implicant. 

Figure 3.9(c) shows the K-map with the two original prime implicants, s'd0 and sd1, that correspond to the 
circuit in Figure 3.9(a). When we change s from a 1 to a 0, we have to go out of the prime implicant sd1 and into the 
prime implicant s'd0. Figure 3.9(d) shows the addition of the extra prime implicant d1d0. This time, when moving 
from the prime implicant sd1 to the prime implicant s'd0, we remain inside the new prime implicant d1d0. The 2-to-1 
multiplexer circuit with the extra prime implicant d1d0 added, as shown in Figure 3.9(e) will prevent the glitch from 
happening. 
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Figure 3.9 Example of a glitch: (a) 2-to-1 multiplexer circuit with glitches; (b) timing trace; (c) K-map with 



Chapter 3 − Combinational Circuits  Page 21 of 36 

Digital Logic and Microprocessor Design with VHDL  Copyright Enoch Hwang  

glitches; (d) K-map without glitches; (e) 2-to-1 multiplexer circuit without glitches. 

3.5.1 Using Glitches 

Sometimes, we can use glitches to our advantage, as shown in the following example.  

Example 3.8: A one-shot circuit using glitches 

A circuit that outputs a single, short pulse when given an input of arbitrary time length is known as a one-shot. 
A one-shot circuit is used, for example, for generating a single, short 1 pulse when a key is pressed. Sometimes, 
when a key is pressed, we do not want to generate a continuous 1 signal for as long as the key is pressed. Instead, we 
want the output signal to be just a single, short pulse, even if the key is still being pressed. 

Since logic gates have an inherent signal delay, we can use this delay to determine the duration of the short 
pulse that we want. This short pulse, of course, is really just a glitch in the circuit. Figure 3.10(a) shows a sample 
one-shot circuit using signal delays through three inverters; Figure 3.10(b) shows a sample timing trace for it. 

Input Output
A  

 

(a) 

 

Output

A

Input

Delay through
the Inverters

Delay through
the AND gate  

(b) 

Figure 3.10 A one-shot circuit: (a) using signal delay through three inverters; (b) timing trace. 

Initially, assume that the value for Input is a 0, and point A is a 1; therefore, the output of the AND gate is 0. 
When we set Input to a 1 momentarily, both inputs to the AND gate will be 1’s, and so after a delay through the AND 
gate, Output will be a 1. After a delay through the three inverters, with Input still at 1, point A will go to a 0, and 
Output will change back to a 0. When we set Input back to a 0, Output will continue to be a 0. After the delay 
through the inverters when point A goes back to a 1, Output remains at 0. 

As a result, a glitch is created by the signal delay through the three inverters. This glitch, however, is the short 1 
pulse that we want, and the length of this pulse is determined by the delay through the inverters. With this one-shot 
circuit, it does not matter how long the input key is being pressed, the output signal will always be the same 1 pulse 
each time that the key is pressed. ♦ 

3.6 BCD to 7-Segment Decoder 

We will now synthesize the circuit for a BCD to 7-segment decoder for driving a 7-segment LED display. The 
decoder converts a 4-bit binary coded decimal (BCD) input to seven output signals for turning on the seven lights in 
a 7-segment LED display. The 4-bit input encodes the binary representation of a decimal digit. Given the decimal 
digit input, the seven output lines are turned on in such a way so that the LED displays the corresponding digit. The 
7-segment LED display schematic with the names of each segment labeled is shown here. 
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The operation of the BCD to 7-segment decoder is specified in the truth table in Figure 3.11. The four inputs to 

the decoder are i3, i2, i1, and i0, and the seven outputs for each of the seven LEDs are labeled a, b, c, d, e, f, and g. 
For each input combination, the corresponding digit to display on the 7-segment LED is shown in the “Display” 
column. The segments that need to be turned on for that digit will have a 1, while the segments that need to be 
turned off for that digit will have a 0. For example, for the 4-bit input 0000, which corresponds to the digit 0, 
segments a, b, c, d, e, and f need to be turned on, while segment g needs to be turned off. 

Notice that the input combinations 1010 to 1111 are not used, and so don’t-care values are assigned to all of the 
segments for these six combinations. 

 

Inputs Decimal a b c d e f g 
i3 i2 i1 i0 Digit 

Display 
       

0 0 0 0 0  1 1 1 1 1 1 0 

0 0 0 1 1  0 1 1 0 0 0 0 

0 0 1 0 2  1 1 0 1 1 0 1 

0 0 1 1 3  1 1 1 1 0 0 1 

0 1 0 0 4  0 1 1 0 0 1 1 

0 1 0 1 5  1 0 1 1 0 1 1 

0 1 1 0 6  1 0 1 1 1 1 1 

0 1 1 1 7  1 1 1 0 0 0 0 

1 0 0 0 8  1 1 1 1 1 1 1 

1 0 0 1 9  1 1 1 0 0 1 1 

Rest of the Combinations × × × × × × × 

Figure 3.11 Truth table for the BCD to 7-segment decoder. 

From the truth table in Figure 3.11, we are able to specify seven equations that are dependent on the four inputs 
for each of the seven segments. For example, the canonical form equation for segment a is 

a = i3'i2'i1'i0' + i3'i2'i1i0' + i3'i2'i1i0 + i3'i2i1'i0 + i3'i2i1i0' + i3'i2i1i0 + i3i2'i1'i0' + i3i2'i1'i0 

Before implementing this equation directly in a circuit, we want to simplify it first using the K-map method. 
The K-map for the equation for segment a is 
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i1i0

i3i2

00 1

00

1 1

1 1 1

1 1

01 11 10
0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

01

11

10

a

× × × ×

××

i1

i3

i2i0

i2'i0'

 
From evaluating the K-map, we derive the simpler equation for segment a as 

    a = i3 + i1 + i2'i0' + i2i0 = i3 + i1 + (i2  i0) 

Proceeding in a similar manner, we get the following remaining six equations 

    b = i2' + (i1  i0) 
    c = i2 + i1' + i0 
    d = i1i0' + i2'i0' + i2'i1 + i2i1'i0 
    e = i1i0' + i2'i0' 
    f = i3 + i2i1' + i2i0' + i1'i0' 
    g = i3 + (i2 ⊕ i1) + i1i0' 

From these seven simplified equations, we can now implement the circuit, as shown in Figure 3.12. The 
labeling of the nodes and gates in the drawing will be explained and used in Section 3.7.1. 
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Figure 3.12 Circuit for the BCD to 7-segment decoder. 

3.7 VHDL for Combinational Circuits 

Writing VHDL code to describe a digital circuit can be done using any one of three models or levels of 
abstraction: structural, dataflow, or behavioral. The choice of which model to use usually depends on what is 
known about the circuit. At the structural level, which is the lowest level, you first have to manually design the 
circuit. Having drawn the circuit, you use VHDL to specify the components and gates that are needed by the circuit 
and how they are connected together by following your circuit exactly. Synthesizing a structural VHDL description 
of a circuit will produce a netlist that is like your original circuit. The advantage of working at the structural level is 
that you have full control as to what components are used and how they are connected together. The disadvantage, 
of course, is that you need to manually come up with the circuit, and so the full capabilities of the synthesizer are not 
utilized. A simple example of a structural VHDL code for a 2-input multiplexer was shown in Figure 1.11. 

At the dataflow level, the circuit is defined using built-in VHDL logic operators (such as the AND, OR, and NOT) 
that are applied to input signals. In order to work at this level, you need to have the Boolean equations for the circuit. 
Hence, the dataflow level is best suited for describing a circuit that is already expressed as a Boolean function. The 
equations are easily converted to the required VHDL syntax using signal-assignment statements. A simple example 
of a dataflow VHDL code for a 2-input multiplexer was shown in Figure 1.9. 

All of the statements used in the structural and dataflow levels are executed concurrently, as opposed to 
statements in a computer program, which usually are executed in a sequential manner. In other words, the ordering 
of the VHDL statements written in the structural or dataflow level does not matter—the results would be exactly the 
same. 

Describing a circuit at the behavioral level is very similar to writing a computer program. You have all of the 
standard high-level programming constructs—such as the FOR LOOP, WHILE LOOP, IF THEN ELSE, CASE, and variable 
assignments. The statements are enclosed in a PROCESS block and are executed sequentially. A simple example of a 
behavioral VHDL code for a 2-input multiplexer was shown in Figure 1.5. 

3.7.1 Structural BCD to 7-Segment Decoder 

Figure 3.13 shows the structural VHDL code for the BCD to 7-segment decoder based on the circuit shown in 
Figure 3.12. The code starts with declaring and defining all of the components needed in the circuit. For this decoder 
circuit, only basic gates (such as the NOT gate, 2-input AND, 3-input AND, etc.) are used. The ENTITY statement is 
used to declare all of these components, and the ARCHITECTURE statement is used to define the operation of these 
components. Since we are using only simple gates, defining these components using the dataflow model is the 
simplest. For more complex components (as we will see in later chapters), we want to choose the model that is best 
suited for the information that we have available for the circuit. The reason why the code shown in Figure 3.13 is 
structural is not because of how these components are defined, but rather on how these components are connected 
together to form the enclosing entity; in this case, the bcd entity. Notice that the LIBRARY and USE statements need to 
be repeated for every ENTITY declaration. 

The actual structural code begins with the bcd ENTITY declaration. The bcd circuit shown in Figure 3.12 has four 
input signals: i3, i2, i1, and i0, and seven output signals: a, b, c, d, e, f, and g. These signals are declared in the PORT 
list using the keyword IN for the input signals, and OUT for the output signals; both of which are of type STD_LOGIC. 

The ARCHITECTURE section begins by specifying the components needed in the circuit using the COMPONENT 
statement. The port list in the COMPONENT statements must match exactly the port list in the entity declarations of 
the components. They must match not only in the number, direction, and type of the signals but also in the names 
given to the signals. Note also that names in the component port list can be the same as the names in the bcd entity 
port list, but they are not the same signals. For example, the and2gate component port list and the bcd entity port list 
both have two signals called i1 and i2. References to these two signals in the body of the bcd architecture are for the 
signals declared in the bcd entity. 

After the COMPONENT statements, the internal node signals are declared using the SIGNAL statement. The names 
listed are the same as the internal node names used in the circuit in Figure 3.12 for easy reference. 
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Following all of the declarations, the body of the architecture starts with the keyword BEGIN. For each gate used 
in the circuit, there is a corresponding PORT MAP statement. Each PORT MAP statement begins with an optional label 
(i.e., U1, U2, and so on) followed by the name of the component (as previously declared with the COMPONENT 
statements) to use. Again, the labels used in the PORT MAP statements correspond to the labels on the gates in the 
circuit in Figure 3.12. The parameter list in the PORT MAP statement matches the port list in the component 
declaration. For example, U0 is instantiated with the component notgate. The first parameter in the PORT MAP 
statement is the input signal i0, and the second parameter is the output signal ip0. U4 is instantiated with the 3-input 
OR gate. The three inputs are i3, i1, and a1, and the output is a. Here, a1 is the output from the 2-input XNOR gate of 
U3. The rest of the PORT MAP statements in the program are obtained in a similar manner. 

All of the PORT MAP statements are executed concurrently, and therefore, the ordering of these statements is 
irrelevant. In other words, changing the ordering of these statements will still produce the same result. Any time 
when a signal in a PORT MAP statement changes value (i.e., from a 0 to a 1 or vice versa) that PORT MAP statement is 
executed. 

----------------- NOT gate ----------------------- 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
ENTITY notgate IS PORT( 
  i: IN STD_LOGIC; 
  o: OUT STD_LOGIC); 
END notgate; 
ARCHITECTURE Dataflow OF notgate IS 
BEGIN 
  o <= NOT i; 
END Dataflow; 

----------------- 2-input AND gate --------------- 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
ENTITY and2gate IS PORT( 
  i1, i2: IN STD_LOGIC; 
  o: OUT STD_LOGIC); 
END and2gate; 
ARCHITECTURE Dataflow OF and2gate IS 
BEGIN 
  o <= i1 AND i2; 
END Dataflow; 

----------------- 3-input AND gate --------------- 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
ENTITY and3gate IS PORT( 
  i1, i2, i3: IN STD_LOGIC; 
  o: OUT STD_LOGIC); 
END and3gate; 
ARCHITECTURE Dataflow OF and3gate IS 
BEGIN 
  o <= (i1 AND i2 AND i3); 
END Dataflow; 

----------------- 2-input OR gate ---------------- 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
ENTITY or2gate IS PORT( 
  i1, i2: IN STD_LOGIC; 
  o: OUT STD_LOGIC); 
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END or2gate; 
ARCHITECTURE Dataflow OF or2gate IS 
BEGIN 
  o <= i1 OR i2; 
END Dataflow; 

----------------- 3-input OR gate ---------------- 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
ENTITY or3gate IS PORT( 
  i1, i2, i3: IN STD_LOGIC; 
  o: OUT STD_LOGIC); 
END or3gate; 
ARCHITECTURE Dataflow OF or3gate IS 
BEGIN 
  o <= i1 OR i2 OR i3; 
END Dataflow; 

----------------- 4-input OR gate ---------------- 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
ENTITY or4gate IS PORT( 
  i1, i2, i3, i4: IN STD_LOGIC; 
  o: OUT STD_LOGIC); 
END or4gate; 
ARCHITECTURE Dataflow OF or4gate IS 
BEGIN 
  o <= i1 OR i2 OR i3 OR i4; 
END Dataflow; 

----------------- 2-input XOR gate --------------- 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
ENTITY xor2gate IS PORT( 
  i1, i2: IN STD_LOGIC; 
  o: OUT STD_LOGIC); 
END xor2gate; 
ARCHITECTURE Dataflow OF xor2gate IS 
BEGIN 
  o <= i1 XOR i2; 
END Dataflow; 

----------------- 2-input XNOR gate -------------- 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
ENTITY xnor2gate IS PORT( 
  i1, i2: IN STD_LOGIC; 
  o: OUT STD_LOGIC); 
END xnor2gate; 
ARCHITECTURE Dataflow OF xnor2gate IS 
BEGIN 
  o <= NOT(i1 XOR i2); 
END Dataflow; 
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----------------- bcd entity --------------------- 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY bcd IS PORT( 
  i0, i1, i2, i3: IN STD_LOGIC; 
  a, b, c, d, e, f, g: OUT STD_LOGIC); 
END bcd; 
ARCHITECTURE Structural OF bcd IS 
  COMPONENT notgate PORT( 
    i: IN STD_LOGIC; 
    o: OUT STD_LOGIC); 
  END COMPONENT; 
  COMPONENT and2gate PORT( 
    i1, i2: IN STD_LOGIC; 
    o: OUT STD_LOGIC); 
  END COMPONENT; 
  COMPONENT and3gate PORT( 
    i1, i2, i3: IN STD_LOGIC; 
    o: OUT STD_LOGIC); 
  END COMPONENT; 
  COMPONENT or2gate PORT( 
    i1, i2: IN STD_LOGIC; 
    o: OUT STD_LOGIC); 
  END COMPONENT; 
  COMPONENT or3gate PORT( 
    i1, i2, i3: IN STD_LOGIC; 
    o: OUT STD_LOGIC); 
  END COMPONENT; 
  COMPONENT or4gate PORT( 
    i1, i2, i3, i4: IN STD_LOGIC; 
    o: OUT STD_LOGIC); 
  END COMPONENT; 
  COMPONENT xor2gate PORT( 
    i1, i2: IN STD_LOGIC; 
    o: OUT STD_LOGIC); 
  END COMPONENT; 
  COMPONENT xnor2gate PORT( 
    i1, i2: IN STD_LOGIC; 
    o: OUT STD_LOGIC); 
  END COMPONENT; 
 
  SIGNAL ip0,ip1,ip2,a1,b1,d1,d2,d3,d4,e1,e2,f1,f2,f3,g1,g2: STD_LOGIC; 
BEGIN 
  U0: notgate PORT MAP(i0,ip0); 
  U1: notgate PORT MAP(i1,ip1); 
  U2: notgate PORT MAP(i2,ip2); 
  U3: xnor2gate PORT MAP(i2, i0, a1); 
  U4: or3gate PORT MAP(i3, i1, a1, a); 
  U5: xnor2gate PORT MAP(i1, i0, b1); 
  U6: or2gate PORT MAP(ip2, b1, b); 
  U7: or3gate PORT MAP(i2, ip1, i0, c); 
  U8: and2gate PORT MAP(i1, ip0, d1); 
  U9: and2gate PORT MAP(ip2, ip0, d2); 
  U10: and2gate PORT MAP(ip2, i1, d3); 
  U11: and3gate PORT MAP(i2, ip1, i0, d4); 
  U12: or4gate PORT MAP(d1, d2, d3, d4, d); 
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  U13: and2gate PORT MAP(i1, ip0, e1); 
  U14: and2gate PORT MAP(ip2, ip0, e2); 
  U15: or2gate PORT MAP(e1, e2, e); 
  U16: and2gate PORT MAP(i2, ip1, f1); 
  U17: and2gate PORT MAP(i2, ip0, f2); 
  U18: and2gate PORT MAP(ip1, ip0, f3); 
  U19: or4gate PORT MAP(i3, f1, f2, f3, f); 
  U20: xor2gate PORT MAP(i2, i1, g1); 
  U21: and2gate PORT MAP(i1, ip0, g2); 
  U22: or3gate PORT MAP(i3, g1, g2, g); 
END Structural; 

Figure 3.13 Structural VHDL code of the BCD to 7-segment decoder. 

3.7.2 Dataflow BCD to 7-Segment Decoder 

Figure 3.14 shows the dataflow VHDL code for the BCD to 7-segment decoder based on the Boolean equations 
derived in Section 3.6. The ENTITY declaration for this dataflow code is exactly the same as that for the structural 
code, since the interface for the decoder remains the same.  

In the ARCHITECTURE section, seven concurrent signal assignment statements are used: one for each of the seven 
Boolean equations, which corresponds to the seven LED segments. For example, the equation for segment a is 

 a = i3 + i1 + (i2  i0) 

This is converted to the signal assignment statement: 

 a <= i3 OR i1 OR (i2 XNOR i0); 

Proceeding in a similar manner, we obtain the signal assignment statements in the dataflow code for the 
remaining six equations. 

All of the signal assignment statements are executed concurrently, and therefore, the ordering of these 
statements is irrelevant. In other words, changing the ordering of these statements will still produce the same result. 
Any time when a signal on the right-hand side of an assignment statement changes value (i.e., from a 0 to a 1 or vice 
versa) that assignment statement is executed. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
ENTITY bcd IS PORT( 
  i0, i1, i2, i3: IN STD_LOGIC; 
  a, b, c, d, e, f, g: OUT STD_LOGIC); 
END bcd; 
ARCHITECTURE Dataflow OF bcd IS 
BEGIN 
 a <= i3 OR i1 OR (i2 XNOR i0);      -- seg a 
 b <= (NOT i2) OR NOT (i1 XOR i0);      -- seg b 
 c <= i2 OR (NOT i1) OR i0;       -- seg c 
 d <= (i1 AND NOT i0) OR (NOT i2 AND NOT i0)    -- seg d 
        OR (NOT i2 AND i1) OR (i2 AND NOT i1 AND i0); 
 e <= (i1 AND NOT i0) OR (NOT i2 AND NOT i0);    -- seg e 
 f <= i3 OR (i2 AND NOT i1)       -- seg f 
        OR (i2 AND NOT i0) OR (NOT i1 AND NOT i0); 
 g <= i3 OR (i2 XOR i1) OR (i1 AND NOT i0);    -- seg g 
END Dataflow; 

Figure 3.14 Dataflow VHDL code of the BCD to 7-segment decoder.  
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3.7.3 Behavioral BCD to 7-Segment Decoder 

The behavioral VHDL code for the BCD to 7-segment decoder is shown in Figure 3.15. The port list for this 
entity is slightly different from the two entities in the previous sections. Instead of having the four separate input 
signals, i0, i1, i2, and i3, we have declared a vector, I, of length four. This vector, I, is declared with the type keyword 
STD_LOGIC_VECTOR, that is, a vector of type STD_LOGIC. The length of the vector is specified by the range (3 
DOWNTO 0). The first number (3) in the range denotes the index of the most significant bit of the vector, and the 
second number (0) in the range denotes the index of the least significant bit of the vector. Likewise, the seven output 
signals, a to g, are replaced with the STD_LOGIC_VECTOR Segs of length 7. This time, however, the keyword TO is 
used in the range to mean that the most significant bit in the vector is index 1 and the least significant bit in the 
vector is index 7. 

In the architecture section, a PROCESS statement is used. All of the statements inside the process block are 
executed sequentially. The process block itself, however, is treated as a single concurrent statement. Thus, the 
architecture section can have two or more process blocks together with other concurrent statements, and these will 
all execute concurrently. 

The parenthesized list of signals after the PROCESS keyword is referred to as the sensitivity list. The purpose of 
the sensitivity list is that, when a value for any of the listed signals changes, the entire process block is executed 
from the beginning to the end. 

In the code, there is a CASE statement inside the process block. Depending on the value of I, one of the WHEN 
parts will be executed. A WHEN part consists of the keyword WHEN followed by a constant value for the variable I to 
match, followed by the symbol “=>.” The statement or statements after the symbol “=>” is executed when I matches 
that corresponding constant. In the code, all of the WHEN parts contain one signal assignment statement. All of the 
signal assignment statements assign a string of seven bits to the output signal Segs. This string of seven bits 
corresponds to the on-off values of the seven segments, a to g, as shown in the 7-segment decoder truth table of 
Figure 3.11. For example, looking at the truth table, we see that when I = “0000” (that is, for the decimal digit 0) we 
want all of the segments to be on except for segment g. Recall that in the declaration of the Segs vector, the most 
significant bit, which is the leftmost bit in the bit string, is index 1, and the least significant bit, which is the 
rightmost bit, is index 7. In VHDL, the notation Segs(n) is used to denote the index n of the Segs vector. In the code, 
we have designated Segs(1) for segment a, Segs(2) for segment b, and so on to Segs(7) for segment g. So, in order to 
display the decimal digit 0, we need to assign the bit string “1111110” to Segs. 

If the value of I does not match any of the WHEN parts, then the WHEN OTHERS part will be chosen. In this case, 
all of the segments will be turned off. Notice that for both the structural and the dataflow code, the segments are not 
all turned off when I is one of these values. Instead, a certain combination of LEDs are turned on because the K-
maps assigned some of the don’t-cares to 1’s. If we assign all the don’t-cares to 0, then all the LEDs will be turned 
off. An alternative to turning all of the segments off for the remaining six cases is to display the six alphabets, A, b, 
C, d, E, and F, for the six hexadecimal digits. The two letters, b, and d, have to be displayed in lower case, because 
otherwise, it will be the same as the numbers 8 and 0, respectively. 

A sample simulation trace of the behavioral 7-segment decoder code is shown in Figure 3.16. 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY bcd IS PORT ( 
 I: IN STD_LOGIC_VECTOR (3 DOWNTO 0); 
 Segs: OUT STD_LOGIC_VECTOR (1 TO 7)); 
END bcd; 

ARCHITECTURE Behavioral OF bcd IS 
BEGIN 
 PROCESS(I) 
 BEGIN 
  CASE I IS 
  WHEN "0000" => Segs <= "1111110"; 
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  WHEN "0001" => Segs <= "0110000"; 
  WHEN "0010" => Segs <= "1101101"; 
  WHEN "0011" => Segs <= "1111001"; 
  WHEN "0100" => Segs <= "0110011"; 
  WHEN "0101" => Segs <= "1011011"; 
  WHEN "0110" => Segs <= "1011111"; 
  WHEN "0111" => Segs <= "1110000"; 
  WHEN "1000" => Segs <= "1111111"; 
  WHEN "1001" => Segs <= "1110011"; 
  WHEN OTHERS => Segs <= "0000000"; 
  END CASE; 
 END PROCESS; 
END Behavioral; 

Figure 3.15 Behavioral VHDL code of the BCD to 7-segment decoder. 

 
Figure 3.16 A sample simulation trace of the behavioral 7-segment decoder code. 

3.8 Summary Checklist 

 Combinational circuit 
 Analysis of combinational circuit 
 Synthesis of combinational circuit 
 Technology mapping 
 Using K-maps to minimize a Boolean function 
 The use of “don’t-cares” 
 Using “don’t-cares” in a K-map 
 Using the Quine-McCluskey method to minimize a Boolean function 
 Timing hazards and glitches 
 How to eliminate simple glitches 
 Writing structural, dataflow, and behavioral VHDL code 
 Be able to analyze any combinational circuit by deriving its truth table or Boolean function 
 Be able to synthesize a combinational circuit from a truth table or Boolean function 
 Be able to reduce any combinational circuit to its smallest size 
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3.9 Problems 
3.1 Derive the truth table for the following circuits: 

a)  
x y z

F

 

b)  
w

x
y

z

F

 

c)  

F

x y z

 

d)  
a b c

F

 

3.2 Derive the Boolean function directly from the circuits in Problem 3.1. 

3.3 Draw the circuit diagram that implements the following truth tables. 
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a) b) 
a b c F 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0  

w x y z F 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 0 
1 1 1 1 1  

c) d) 
w x y z F1 F2 

0 0 0 0 1 1 
0 0 0 1 0 1 
0 0 1 0 0 1 
0 0 1 1 1 1 
0 1 0 0 0 0 
0 1 0 1 1 1 
0 1 1 0 1 0 
0 1 1 1 0 0 
1 0 0 0 0 1 
1 0 0 1 1 1 
1 0 1 0 1 0 
1 0 1 1 0 0 
1 1 0 0 1 1 
1 1 0 1 0 1 
1 1 1 0 0 1 
1 1 1 1 1 1  

N3 N2 N1 N0 F 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 1 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 1 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 1  

3.4 Draw the circuit diagram that implements the following expressions: 
a) F (x, y, z) = Σ(0, 1, 6) 
b) F (w,x, y, z) = Σ(0, 1, 6) 
c) F (w,x, y, z) = Σ(2, 6, 10, 11, 14, 15) 
d) F (x, y, z) = Π(0, 1, 6) 
e) F (w,x, y, z) = Π(0, 1, 6) 
f) F (w,x, y, z) = Π(2, 6, 10, 11, 14, 15) 

3.5 Draw the circuit diagram that implements the following Boolean functions using as few basic gates as possible, 
but without modifying the equation. 

a) F = xy' + x'y'z + xyz' 
b) F = w'z' + w'xy + wx'z + wxyz 
c) F = w'xy'z + w'xyz + wxy'z + wxyz 
d) F = N3'N2'N1N0' + N3'N2'N1N0 + N3N2'N1N0' + N3N2'N1N0 + N3N2N1'N0' + N3N2N1N0 
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e) F = [(x  y)' + (xyz)'] (w' + x + z) 
f) F = x ⊕ y ⊕ z 
g) F = [w'xy'z + w'z (y ⊕ x)]' 

3.6 Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 2-input AND, 2-input 
OR, and  NOT gates. 

3.7 Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if the input number is any one of the 
following numbers: 2, 3, 10, 11, 12, and 15. Otherwise, it outputs a 0. 

3.8 Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if the input number is greater than or equal to 
5. Otherwise, it outputs a 0. 

3.9 Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if the input number has an even number of 
zeros. Otherwise, it outputs a 0. 

3.10 Construct the following circuit. The circuit has five input signals and one output signal. The five input lines are 
labeled W, X, Y, Z, and E, and the output line is labeled F. E is used to enable (turn on) or disable (turn off) the 
circuit; thus, when E = 0, the circuit is disabled, and F is always 0. When E = 1, the circuit is enabled, and F is 
determined by the value of the four input signals, W, X, Y, and Z, where W is the most significant bit. If the 
value is odd, then F = 1, otherwise F = 0. 

3.11 Draw the smallest circuit that inputs two 2-bit numbers. The circuit outputs a 2-bit number that represents the 
count of the number of even numbers in the inputs. The number 0 is taken as an even number. For example, if 
the two input numbers are 0 and 3, then the circuit outputs the number 1 in binary. If the two input numbers are 
0 and 2, then the circuit outputs the number 2 in binary. Show your work by deriving the truth table, the 
equation, and finally the circuit. You need to minimize all of the equations to standard forms. 

3.12 Derive and draw the circuit that inputs two 2-bit unsigned numbers. The circuit outputs a 3-bit signed number 
that represents the difference between the two input numbers (i.e., it is the result of the first number minus the 
second number). Derive the truth table and equations in canonical form. 

3.13 Use Boolean algebra to show that the following circuit is equivalent to the NOT gate. 

 

3.14 Construct a 4-input NAND gate circuit using only 2-input NAND gates. 

3.15 Implement the following circuit using as few NAND gates (with any number of inputs) as possible. 

EN T A B

Out

 

3.16 Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 2-input NAND gates. 
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3.17 Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 3-input NAND gates. 

3.18 Draw the circuit diagram that implements the Boolean functions in Problem 3.5 using only 3-input NOR gates. 

3.19 Convert the following circuit as is (i.e., do not reduce it first) to use only 2-input NOR gates. 

 

3.20 Convert the following full adder circuit to use only eleven 2-input NAND gates. 

x y

cin

cout

s  

3.21 Perform a timing analysis of the circuit shown in Figure 3.9(e) to see that the circuit does not produce any 
glitches. 

3.22 Derive a circuit for the 2-input XOR gate that uses only 2-input NAND gates. 

3.23 Use K-maps to reduce the Boolean functions represented by the truth tables in Problem 3.3 to standard form. 

3.24 Use K-maps to reduce the Boolean functions in Problem 3.4 to standard form. 

3.25 Use K-maps to reduce the Boolean functions in Problem 3.5 to standard form. 

3.26 List all of the PIs, EPIs, and all of the minimized standard form solutions for the following equation.  
 

F(v,w,x,y,z) = Π(2,3,4,5,6,7,8,9,11,13,15,18,19,20,21,22,29,30,31) 

3.27 Use K-maps to reduce the following 4-variable Boolean functions F(w, x, y, z) to standard form: 
a) 1-minterms: m2, m3, m4, m5 

Don’t-care minterms: m10, m11, m12, m13, m14, m15 
b) 1-minterms: 1, 3, 4, 7, 9 

Don’t-care minterms: 0, 2, 13, 14, 15 
c) 1-minterms: 2, 3, 8, 9 

Don’t-care minterms: 1, 5, 6, 7, 13, 15 

3.28 Use K-maps to reduce the following 5-variable Boolean functions F(v, w, x, y, z) to standard form: 
a) 1-minterms: 1, 3, 4, 7, 9 

Don’t-care minterms: 0, 2, 13, 14, 15 
b) 1-minterms: 2, 4, 10, 15, 16, 21, 26, 29 

Don’t-care minterms: 5, 7, 13, 18, 23, 24, 31 
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3.29 Use the Quine-McCluskey method to simplify the function f(w,x,y,z) = Σ(0,2,5,7,13,15). List all the PI’s, EPI’s, 
cover lists, and solutions. 

3.30 Use the Quine-McCluskey method to reduce the Boolean functions in Problem 3.4 to standard form. 

3.31 Write the function that eliminates the static hazard(s) in the function F = w'z + xyz' + wx'y. 

3.32 Write the function that eliminates the static hazard(s) in the function F = y'z' + wz + w'x'y. 

3.33 Write the complete structural VHDL code for the Boolean functions in Problem 3.4. 

3.34 Write the complete dataflow VHDL code for the Boolean functions in Problem 3.4. 

3.35 Write the complete behavioral VHDL code for the Boolean functions in Problem 3.4. 

3.36 Write the complete dataflow VHDL code for the Boolean functions in Problem 3.5. 

3.37 Write the behavioral VHDL code for converting an 8-bit unsigned binary number to two 4-bit BCD numbers. 
These two BCD numbers represent the tenth and unit digits of a decimal number. Also, turn on the decimal 
point LED for the unit digit if the 8-bit binary number is in the one hundreds range, and turn on the decimal 
point LED for the tenth digit if the 8-bit binary number is in the two hundreds range. This circuit is used as the 
output circuit for many designs in later chapters. 
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