
1

RTL Hardware Design
by P. Chu

Chapter 12 1

Register Transfer
Methodology II

RTL Hardware Design
by P. Chu

Chapter 12 2

Outline
1. Design example: One–shot pulse

generator
2. Design Example: GCD
3. Design Example: UART
4. Design Example: SRAM Interface

Controller
5. Square root approximation circuit

RTL Hardware Design
by P. Chu

Chapter 12 3

1. One–shot pulse generator

• Sequential circuit divided into
– Regular sequential circuit: w/ regular next-state logic
– FSM: w/ random next-state logic
– FSMD: w/ both

• Division for code development; no formal
definition;

• Some design can be coded in different types
• FSMD is most flexible
• One–shot pulse generator as an example

RTL Hardware Design
by P. Chu

Chapter 12 4

• Basic block diagram

RTL Hardware Design
by P. Chu

Chapter 12 5

• Refined block diagram of FSMD

RTL Hardware Design
by P. Chu

Chapter 12 6

• Regular sequential circuit. E.g., mod-10
counter

2

RTL Hardware Design
by P. Chu

Chapter 12 7

• FSM. E.g., edge-detection circuit

RTL Hardware Design
by P. Chu

Chapter 12 8

• FSMD.
E.g., multiplier

RTL Hardware Design
by P. Chu

Chapter 12 9

• One-shot pulse generator
– I/O: Input: go, stop; Output: pulse
– go is the trigger signal, usually asserted for

only one clock cycle
– During normal operation, assertion of go

activates pulse for 5 clock cycles
– If go is asserted again during this interval, it

will be ignored
– If stop is asserted during this interval, pulse

will be cut short and return to 0

RTL Hardware Design
by P. Chu

Chapter 12 10

• FSM implementation

RTL Hardware Design
by P. Chu

Chapter 12 11 RTL Hardware Design
by P. Chu

Chapter 12 12

3

RTL Hardware Design
by P. Chu

Chapter 12 13 RTL Hardware Design
by P. Chu

Chapter 12 14

• Regular sequential circuit implementation
– Based on a mod-5 counter
– Use a flag FF to indicate whether counter should be active
– Code difficult to comprehend

RTL Hardware Design
by P. Chu

Chapter 12 15 RTL Hardware Design
by P. Chu

Chapter 12 16

• FSMD Implementation

RTL Hardware Design
by P. Chu

Chapter 12 17 RTL Hardware Design
by P. Chu

Chapter 12 18

4

RTL Hardware Design
by P. Chu

Chapter 12 19

• Comparison:
– FSMD is most flexible and easy to

comprehend
• What happens to the following

modifications
– The delay extend from 5 cycles to 100 ccyles
– The stop signal is only effective for the first 2

delay cycles and will be ignored otherwise

RTL Hardware Design
by P. Chu

Chapter 12 20

• “Programmable” one-shot generator
– The desired width can be programmed.
– The circuit enters the programming mode

when both go and stop are asserted
– The desired width shifted in via go in the next

three clock cycles

RTL Hardware Design
by P. Chu

Chapter 12 21

• Can be easily
extended in
ASMD chart

• How about FSM
and regular
sequential circuit?

RTL Hardware Design
by P. Chu

Chapter 12 22

2. GCD circuit

• GCD: Greatest Common Divisor
– E.g, gcd(1, 10)=1, gcd(12,9)=3

• GCD without division:

RTL Hardware Design
by P. Chu

Chapter 12 23

• Pseudo algorithm

RTL Hardware Design
by P. Chu

Chapter 12 24

• Modified pseudo algorithm w/o while loop

5

RTL Hardware Design
by P. Chu

Chapter 12 25

• ASMD chart

RTL Hardware Design
by P. Chu

Chapter 12 26

• VHDL code

RTL Hardware Design
by P. Chu

Chapter 12 27 RTL Hardware Design
by P. Chu

Chapter 12 28

RTL Hardware Design
by P. Chu

Chapter 12 29

• What is the problem of this code?
• Another observation

RTL Hardware Design
by P. Chu

Chapter 12 30

6

RTL Hardware Design
by P. Chu

Chapter 12 31

• What is the performance now?
• Can we do better with more hardware

resources

RTL Hardware Design
by P. Chu

Chapter 12 32

Square root approximation circuit
• A example of data-oriented (computation-

intensive) application
• Equation:

• 0.125x and 0.5y corresponds to shift right
3 bits and 1 bit

RTL Hardware Design
by P. Chu

Chapter 12 33

• Pseudo code:

RTL Hardware Design
by P. Chu

Chapter 12 34

• Direct “data-flow” implementation

RTL Hardware Design
by P. Chu

Chapter 12 35 RTL Hardware Design
by P. Chu

Chapter 12 36

• Requires one adder and six subtractors
• Code contains only concurrent signal

assignment statements
• The order is not important.
• Sequence of execution is embedded in the

flow of data

7

RTL Hardware Design
by P. Chu

Chapter 12 37

• Data flow graph
– Shows data dependency
– Node (circle): an operation
– Arches: input and output

variables
• Note that there is limited

degree of parallelism
– At most two operations can

be perform simultaneously

RTL Hardware Design
by P. Chu

Chapter 12 38

• RT methodology can be used to share the
operator

• Tasks in converting a dataflow graph to an
ASMD chart
– Scheduling: when a function (circle) can start

execution
– Binding: which functional unit is assigned to

perform the operation
• In square root algorithm,

– all operations can be performed by a modified
addition unit

– No function unit is needed for shifting

RTL Hardware Design
by P. Chu

Chapter 12 39

• Scheduling with two functional units

RTL Hardware Design
by P. Chu

Chapter 12 40

• Scheduling with
one functional unit

RTL Hardware Design
by P. Chu

Chapter 12 41

• ASMD
chart

RTL Hardware Design
by P. Chu

Chapter 12 42

• Registers can be shared as well
– reduce the number of unique variables
– A variable can be reused if its value is no longer

needed
• E.g.,

8

RTL Hardware Design
by P. Chu

Chapter 12 43 RTL Hardware Design
by P. Chu

Chapter 12 44

• VHDL code
– Needs to manually code the data path two

insure functional units sharing
– One unit for abs and min
– One unit for abs, min, - and +
– Can be implemented by using an

adder/subtractor with special input and output
routing circuits

RTL Hardware Design
by P. Chu

Chapter 12 45 RTL Hardware Design
by P. Chu

Chapter 12 46

RTL Hardware Design
by P. Chu

Chapter 12 47 RTL Hardware Design
by P. Chu

Chapter 12 48

9

RTL Hardware Design
by P. Chu

Chapter 12 49

High-level synthesis

• Convert a “dataflow code” into ASMD
based code (RTL code).
– RTL code can be optimized for performance

(min # clock cycles), area (min # functional
units) etc.

– Perform scheduling, binding
– Minimize # registers and muxes

• Mainly for computation intensive
applications (e.g., DSP)

