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Outline
1. Design example: One–shot pulse 

generator 
2. Design Example: GCD
3. Design Example: UART
4. Design Example: SRAM Interface 

Controller
5. Square root approximation circuit
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1. One–shot pulse generator 

• Sequential circuit divided into
– Regular sequential circuit: w/ regular next-state logic
– FSM: w/ random next-state logic 
– FSMD: w/ both 

• Division for code development; no formal 
definition; 

• Some design can be coded in different types
• FSMD is most flexible 
• One–shot pulse generator as an example
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• Basic block diagram 
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• Refined block diagram of FSMD
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• Regular sequential circuit. E.g., mod-10 
counter 
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• FSM. E.g., edge-detection circuit 
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• FSMD. 
E.g., multiplier
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• One-shot pulse generator 
– I/O: Input: go, stop; Output: pulse
– go is the trigger signal, usually asserted for 

only one clock cycle
– During  normal operation,  assertion of go

activates pulse for 5 clock cycles
– If go is asserted again during this interval, it 

will be ignored
– If stop is asserted during this interval, pulse 

will be cut short and return to 0
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• FSM implementation 
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• Regular sequential circuit implementation
– Based on a mod-5 counter 
– Use a flag FF to indicate whether counter should be active
– Code difficult to comprehend
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• FSMD Implementation
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• Comparison:
– FSMD is most flexible and easy to 

comprehend
• What happens to the following 

modifications
– The delay extend from 5 cycles to 100 ccyles
– The stop signal is only effective for the first 2 

delay cycles and will be ignored otherwise 
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• “Programmable” one-shot generator 
– The desired width can be programmed.
– The circuit enters the programming mode 

when both go and stop are asserted
– The desired width shifted in via go in the next 

three clock cycles
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• Can be easily 
extended in 
ASMD chart 

• How about FSM 
and regular 
sequential circuit?
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2. GCD circuit 

• GCD: Greatest Common Divisor
– E.g, gcd(1, 10)=1, gcd(12,9)=3 

• GCD without division:
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• Pseudo algorithm
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• Modified pseudo algorithm w/o while loop
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• ASMD chart
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• VHDL code
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• What is the problem of this code?
• Another observation 
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• What is the performance now?
• Can we do better with more hardware 

resources
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Square root approximation circuit 
• A example of data-oriented (computation-

intensive) application
• Equation:

• 0.125x and 0.5y corresponds to shift right 
3 bits and 1 bit
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• Pseudo code:
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• Direct “data-flow” implementation
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• Requires one adder and six subtractors
• Code contains only concurrent signal 

assignment statements
• The order is not important.
• Sequence of execution is embedded in the 

flow of data
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• Data flow graph
– Shows data dependency
– Node (circle): an operation
– Arches: input and output 

variables
• Note that there is limited 

degree of parallelism
– At most two operations can 

be perform simultaneously 
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• RT methodology can be used to share the 
operator

• Tasks in converting a dataflow graph to an 
ASMD chart
– Scheduling: when a function (circle) can start 

execution 
– Binding: which functional unit is assigned to 

perform the operation
• In square root algorithm, 

– all operations can be performed by a modified 
addition unit

– No function unit is needed for shifting
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• Scheduling with two functional units
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• Scheduling with 
one functional unit
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• ASMD 
chart
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• Registers can be shared as well 
– reduce the number of unique variables
– A variable can be reused if its value is no longer 

needed
• E.g., 
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• VHDL code
– Needs to manually code the data path two 

insure functional units sharing 
– One unit for abs and min
– One unit for abs, min, - and +
– Can be implemented by using an 

adder/subtractor with special input and output 
routing circuits
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High-level synthesis

• Convert a “dataflow code” into ASMD 
based code (RTL code).
– RTL code can be optimized for performance 

(min # clock cycles), area (min # functional 
units) etc.

– Perform scheduling, binding
– Minimize # registers and muxes

• Mainly for computation intensive 
applications (e.g., DSP) 


