CHAPTER 10

FINITE STATE MACHINE: PRINCIPLE AND
PRACTICE

A finite state machine (FSM) isa sequential circuit with “random” next-state logic. Unlike
the regular sequentia circuit discussed in Chapters 8 and 9, the state transitions and event
seguence of an FSM do not exhibit a simple pattern. Although the basic block diagram of
an FSM is similar to that of aregular sequential circuit, its design procedure is different.
The derivation of an FSM starts with a more abstract model, such as a state diagram or an
a gorithm state machine (ASM) chart. Both show the interactions and transitions between
theinternal statesin graphical formats. In this chapter, we study the representation, timing
andimplementation issuesof an FSM aswell asderivation of theVHDL code. Our emphasis
is on the application of an FSM as the control circuit for a large, complex system, and
our discussion focuses on the issues related to this aspect. Asin previous chapters, our
discussion islimited to the synchronous FSM, in which the state register is controlled by a
single global clock.

10.1 OVERVIEW OF FSMS

Asits nameindicates, afinite state machine (FSM) isacircuit with internal states. Unlike
the regular sequential circuits discussed in Chapters 8 and 9, state transition of an FSM
is more complicated and the sequence exhibits no simple, regular pattern, as in a counter
or shift register. The next-state logic has to be constructed from scratch and is sometimes
known as “random” logic.

Formally, an FSM is specified by five entities:. symbolic states, input signals, output
signals, next-statefunction and output function. A state specifiesauniqueinterna condition

RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability. By Pong P. Chu 313
Copyright (© 2006 John Wiley & Sons, Inc.

314 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

Mealy
Meal
output ——— outpuyt
r logic
next-state d a state_reg
, logic state -
input state_next
>register Moore Moore
output output
ok logic

Figure10.1 Block diagram of an FSM.

of asystem. Astime progresses, the FSM transits from one state to another. The new state
is determined by the next-state function, which is a function of the current state and input
signals. In a synchronous FSM, the transition is controlled by a clock signal and can
occur only at the triggering edge of the clock. As we discussed in Section 8.2, our study
strictly follows the synchronous design methodology, and thus coverage is limited to the
synchronous FSM.

The output function specifiesthe value of the output signals. If itisafunction of the state
only, the output is known as a Moore output. On the other hand, if it is a function of the
state and input signals, the output is known as a Mealy output. An FSM is called a Moore
machine or Mealy machineif it contains only Moore outputs or Mealy outputs respectively.
A complex FSM normally has both types of outputs. The differences and implications of
the two types of outputs are discussed in Section 10.4.

Theblock diagram of an FSM isshownin Figure 10.1. Itissimilar totheblock diagram of
aregular sequential circuit. The state register isthe memory element that stores the state of
theFSM. Itissynchronized by aglobal clock. Thenext-statelogicimplementsthe next-state
function, whose input is the current state and input signals. The output logic implements
the output function. This diagram includes both Moore output logic, whose input is the
current state, and Mealy output logic, whose input is the current state and input signals.
The main application of an FSM is to realize operations that are performed in a sequence
of steps. A large digital system usualy involves complex tasks or algorithms, which can
be expressed as a sequence of actions based on system status and external commands. An
FSM can function as the control circuit (known as the control path) that coordinates and
governsthe operations of other units (known as the data path) of the system. Our coverage
of FSM focuses on this aspect. The actual construction of such systemsis discussed in the
next two chapters. FSMs can also be used in many simpletasks, such as detecting a unique
pattern from an input data stream or generating a specific sequence of output values.

10.2 FSM REPRESENTATION

The design of an FSM normally starts with an abstract, graphic description, such as a state
diagram or an ASM chart. Both descriptions utilize symbolic state notations, show the
transition among the states and indicate the output values under various conditions. A state
diagram or an ASM chart can capture all the needed information (i.e., state, input, output,
next-state function, and output function) in a single graph.

FSM REPRESENTATION 315

mo: Moore output
me: Mealy output

S0
mo <= value

logic expression / me <= value logic expression / me <= value

Figure10.2 Notation for a state.

10.2.1 State diagram

A state diagram consists of nodes, which are drawn as circles (also known as bubbles),
and one-direction transition arcs. The notation for nodes and arcsis shown in Figure 10.2.
A node represents a unique state of the FSM and it has a unique symbolic name. An arc
represents a transition from one state to another and is labeled with the condition that will
cause the transition. The condition is expressed as a logic expression composed of input
signals. An arc will be taken when the corresponding logic expression is evaluated to be
logic’1'.

Theoutput values are al so specified on the state diagram. The Moore output isafunction
of state and thusis naturally placed inside the state bubble. On the other hand, the Mealy
output depends on both state and input and thusis placed under the condition expression of
the transition arcs. To reduce the clutter, we list only the output signals that are activated
or asserted. An output signal will assume the default, unasserted value (not don't-care) if
it is not listed inside the state bubble or under the logic expression of an arc. We use the
following notation for an asserted output value:

signal_name <= asserted value;

In general, an asserted signal will belogic 1’ unless specified otherwise.

The state diagram can best be explained by an example. Figure 10.3 shows the state
diagram of a hypothetical memory controller FSM. The controller is between a processor
and amemory chip, interpreting commandsfrom the processor and then generating acontrol
sequence accordingly. The commands, mem, rw and burst, from the processor constitute
theinput signals of the FSM. The mem signal is asserted to high when amemory accessis
required. Therw signal indicates the type of memory access, and itsvalue can be either ' 1’
or’'0", for memory read and memory write respectively. The burst signal is for a special
mode of amemory read operation. If it is asserted, four consecutive read operations will
be performed. The memory chip has two control signals, oe (for output enable) and we
(for write enable), which need to be asserted during the memory read and memory write
respectively. The two output signals of the FSM, oe and we, are connected to the memory
chip’s control signals. For comparison purpose, we also add an artificial Mealy output
signal, we_me, to the state diagram.

Initially, the FSM isinthe id1e state, waiting for themem command from the processor.
Once mem is asserted, the FSM examines the value of rw and moves to either the read1
state or the write state. Theseinput conditions can be formalized to logic expressions, as
shown in the transition arcs from the idle state:

e mem’: represents that no memory operation is required.

316 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

Figure10.3 State diagram of amemory controller FSM.

FSM REPRESENTATION 317

e mem - rw: represents that a memory read operation is required.
e mem - rw': represents that a memory write operation is required.

The results of these logic expressions are checked at the rising edge of the clock. If the
mem’ expressionistrue(i.e., mem is’0’), the FSM staysinthe id1le state. If themem - rw
expressionistrue (i.e., bothmem and rw are’1’), the FSM movestotheread1 state. Once
it isthere, the oe signal is activated, as indicated in the state bubble. On the other hand, if
the mem - rw’ expression istrue (i.e., mem is’1’ and rw is’0’), the FSM moves to the
write state and activates the we signal.

After the FSM reaches the read1 state, the burst signal is examined at the next rising
edge of the clock. If itis’1’, the FSM will go through read?2, read3 and read4 statesin
the next three clock cycles and then return to the idle state. Otherwise, the FSM returns
tothe idle state. We use the notation “—” to represent the “always true” condition. After
the FSM reachesthe write state, it will return to the idle state at the next rising edge of
the clock.

The we_me signal isasserted only whenthe FSM isinthe id1le state and the mem - rw’
expression is true. It will be deactivated when the FSM moves away from the idle state
(i.e, tothewrite state). It isaMealy output since its value depends on the state and the
input signals (i.e., mem and rw).

In practice, we usually want to force an FSM into an initial state during system initial-
ization. It is frequently done by an asynchronous reset signal, similar to the asynchronous
reset signal used in a register of a regular sequential circuit. Sometimes a solid dot is
used to indicate this transition, as shown in Figure 10.3. Thistransition isonly for system
initialization and has no effect on normal FSM operation.

10.2.2 ASM chart

An algorithmic state machine (ASM) chart is an alternative method for representing an
FSM. Although an ASM chart contains the same amount of information as a state diagram,
it is more descriptive. We can use an ASM chart to specify the complex sequencing of
events involving commands (input) and actions (output), which isthe hallmark of complex
agorithms. An ASM chart representation can easily be transformed to VHDL code. It can
al so be extended to describe FSMD (FSM with a data path), which is discussed in the next
two chapters.

An ASM chart is constructed of a network of ASM blocks. An ASM block consists of
one state box and an optional network of decision boxes and conditional output boxes. A
typical ASM block isshown in Figure 10.4. The state box, asits name indicates, represents
astatein an FSM. It isidentified by asymbolic state name on the top left corner of the state
box. The action or output listed inside the box describes the desired output signal values
when the FSM entersthis state. Since the outputsrely on the state only, they correspond to
the Moore outputs of the FSM. To reduce the clutter, we list only signalsthat are activated
or asserted. An output signal will assume the default, unasserted value if it is not listed
inside the box. We use the same notation for an asserted output signal:

signal_name <= asserted value;

Again, we assume that an asserted signal will belogic’1’ unless specified otherwise.

A decision box tests an input condition to determine the exit path of the current ASM
block. It contains a Boolean expression composed of input signals and plays a simi-
lar role to the logic expression in the transition arc of a state diagram. Because of the
flexibility of the Boolean expression, it can describe more complex conditions, such as

318 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

/ state entry

tat X
state / state bo
name

Moore
output

decision box
\ 4 /

Boolean
—T- o F— .
condition conditional

output box
A 4 / P

(Mealy output)

v \ exit to other ASM v \ exit to other ASM

block block

Figure10.4 ASM block.

(a > b) and (c /= 1). Depending on the value of the Boolean expression, the FSM
canfollow either the true path or the false path, which arelabeled as T or F in the exit paths
of the decision box. If necessary, we can cascade multiple decision boxes inside an ASM
block to describe a complex condition.

A conditional output box also lists asserted output signals. However, it can only be
placed after an exit path of a decision box. It implies that these output signals can be
asserted only if the condition of the previous decision box is met. Since the condition is
composed of a Boolean expression of input signals, these output signals' values depend
on the current state and input signals, and thus they are Mealy outputs. Again, to reduce
clutter, we place a conditional output box in an ASM block only when the corresponding
output signal is asserted. The output signal assumes the default, unasserted value when
there is no conditional output box.

Since an ASM chart is another way of representing an FSM, an ASM chart can be
converted to a state diagram and vice versa. An ASM block corresponds to a state and its
transition arcs of astate diagram. The key for the conversion is the transformation between
the logic expressions of the transition arcs in a state diagram and the decision boxesin an
ASM chart.

The conversion can best be explained by examining several examples. Thefirst example
isshownin Figure 10.5. Itisan FSM with no branching arches. The state diagram and the
ASM chart are almost identical.

The second exampleis shown in Figure 10.6. The FSM has two transition arcs from the
s0 state and has a Mealy output, . Thelogic expressions a and o’ of the transition arches
aretrandated into adecision box with Boolean expression a = 1. Notethat the two states
are transformed into two ASM blocks. The decision and conditional output boxes are not
new states, just actions associated with the ASM block s0.

FSM REPRESENTATION 319

0
y<=1
-1
sy
(a) (b)

Figure10.5 Example 1 of state diagram and ASM chart conversion.

a'l
e F
A
T
-1
a/y0<=1 y0 <=1
@ 81 i
=1

(2) (b)

Figure10.6 Example 2 of state diagram and ASM chart conversion.

320 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

sl w 2

A

(@) (b)

Figure10.7 Example 3 of state diagram and ASM chart conversion.

The third example is shown in Figure 10.7. The transitions from the s0 state are more
involved. We can trandate the logic expressions o’ and a - b’ directly into two decision
boxes of conditionsa = 0 and (a = 1) and (b = 0). However, closer examination
shows that the second decision box is on the false path of the first decision box, which
impliesthat ais’1’. Thus, we can eliminatethea = 1 condition from the second decision
box and make the decision simpler and more descriptive.

Thefourth exampleisshownin Figure 10.8. The output of the FSM ismore complex and
depends on variousinput conditions. The state diagram needs multiple logic expressionsin
thetransition arc to express variousinput conditions. The ASM chart can accommodate the
situation and ismore descriptive. Finally, the ASM chart of the previous memory controller
FSM, whose state diagram is shown in Figure 10.3, is shown in Figure 10.9.

Since an ASM chart is used to model an FSM, two rules apply:

1. For agiven input combination, there is one unique exit path from the current ASM

block.

2. Theexit path of an ASM block must always |lead to a state box. The state box can be

the state box of the current ASM block or a state box of another ASM block.

Several common errors are shown in Figure 10.10. The ASM chart of Figure 10.10(a)
violates the first rule. There are two exit paths if a and b are both ’1’, and there is no exit
path if a and b are both ’0’. The ASM chart of Figure 10.10(b) also violates the first rule
since there is no exit path when the condition of the decision box isfalse. The ASM chart
of Figure 10.10(c) violates the second rule because the exit path of the bottom ASM block
does not enter the top ASM block viathe state box. The second rule essentially states that

TIMING AND PERFORMANCE OF AN FSM 321

a'/

ash'/y1<=1, y2<=1;
ab /y1<=1: o F
T y2 <=1
IR
I

(a) (b

Figure10.8 Example4 of state diagram and ASM chart conversion.

the decision boxes and conditional output boxes are associated with a single ASM block
and they cannot be shared by other ASM blocks.

An ASM chart and a state diagram contain the same information. Because of the use
of decision boxes and flowchart-like graphs, an ASM chart can accommodate the complex
conditionsinvolved in state transitions and Mealy outputs, as shown in the third and fourth
examples. On the other hand, an ASM chart may be cumbersome for an FSM with simple,
straightforward state transitions, and a state diagram is preferred. We use mostly state
diagrams in this chapter, but use mainly extended ASM charts while discussing the RT
methodology in Chapters 11 and 12.

10.3 TIMING AND PERFORMANCE OF AN FSM

10.3.1 Operation of a synchronous FSM

Whileastatediagram or an ASM chart showsall thestatesand transitions, it doesnot provide
information about when atransition takes place. In asynchronous FSM, the state transition
is controlled by the rising edge of the system clock. Mealy output and Moore output are
not directly related to the clock but are responding to input or state change. However, since

FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

322

,
!
| . |
| - [|
| n [1
| v [- |
! L
! 2 3 |
| W ! Pl v |
| g I - - |
L E
| [m
! [
| [J
| !
!
— [!
! i
! i
| @ |
|5 !
BN NS
| o b L b |
| w I ol I | | | |
! [. | | | | |
| in L P P P |
! [[i | Il | Il
| [[| | | | |
| [~— [~ | | ~ | | ~ |
! — . 7 &n _I",v__] o] T on]
| = [T B |) | -4 I !
I o @ L Bl @ | =1] ! =1 !
! 1 ®&| © 1 ®] © | I ®| O | @ © |
! e . | P2 | e |
e . Vo | | | | |
| . | | | | |
" P " , P "
[I N T S, S A J
< <
< <

Figure10.9 ASM chart of amemory controller FSM.

TIMING AND PERFORMANCE OF AN FSM

(@) (b)
0 v
A 4)
F a=1
T
y0 <=1
s1 y
v
(©)

Figure10.10 Common errorsin ASM chart construction.

323

324 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

a Moore output depends only on the state, its transition is indirectly synchronized by the
clock.

Thetiming of a synchronous FSM can best be explained by examining the operation of
an ASM block. Inan ASM chart, each ASM block represents a state of the FSM. Instead
of moving “continuously” from one block to another block, as in a traditiona flowchart,
the transitions between ASM blocks can occur only at the rising edge of the clock. The
operation of an ASM block transition can be interpreted as follows:

1. At therising edge of the clock, the FSM enters a new state (and thus a new ASM

block).

2. Duringthe clock period, the FSM performs several operations. It activatesthe Moore
output signals asserted in this state. It evaluates various Boolean expressions of the
decision boxes and activates the Mealy output signals accordingly.

3. At the next rising edge of the clock (which is the end of the current clock period),
the results of Boolean expressions are examined simultaneously, an exit path is de-
termined, and the FSM enters the designated new ASM block.

A state and its transitions in a state diagram are interpreted in the same manner.

10.3.2 Performance of an FSM

When an FSM issynthesized, the physical componentsintroduce propagation delays. Since
the block diagram of an FSM is almost identical to that of aregular sequential circuit, the
timing analysis of an FSM is similar to that of aregular sequential circuit, as discussed in
Section 8.6. The main timing parameters associated with the block diagram of Figure 10.1
are:
Teqs Tsetups Thota: theclock-to-q delay, setup time and hold time of the state register.
Thewt(maz)- the maximal propagation delay of the next-state logic.
Toutput(mo)- the propagation delay of output logic for the Moore output.
Toutput(me)- the propagation delay of output logic for the Mealy output.

Asin aregular sequentia circuit, the performance of an FSM is characterized by the
maximal clock rate (or minimal clock period). The minimal clock periodis

TC = ch + Tnemt(maz) + Tsetup

and the maximal clock rateis

1
a TCq + Tnewt(muw) + Tsetup

f

Since an FSM s frequently used as the controller, the response of the output signal is aso
important. A Moore output is characterized by the clock-to-output delay, which is

Tco(mo) = ch + Toutput(mo)

A Mealy output may respond to the change of a state or an input signal. The former is
characterized by the clock-to-output delay, similar to the Moore output:

Tco(me) = ch + Toutput(me)

The latter isjust the propagation delay of Mealy output logic, which isT%.iput(me) -

MOORE MACHINE VERSUS MEALY MACHINE 325

10.3.3 Representative timing diagram

The timing diagram helps us to better understand the operation of an FSM and generation
of the output signals. Itisespecialy critical when an FSM is used as a control circuit. One
tricky part regarding the FSM timing concernstherising edge of theclock. Inanideal FSM,
thereis no propagation delay, and thus the state and output signal change at the edge. If the
state or output is fed to other synchronous components, which take a sample at the rising
edge, itisdifficult to determine what the valueis. Inreality, thiswill not happen sincethere
is always a clock-to-q delay from the state register. To avoid confusion, this delay should
aways be included in the timing diagram.

A detailed, representative timing diagram of a state transition is shown in Figure 10.11.
It is based on the FSM shown in Figure 10.6. We assume that the next state of the FSM
(the state next signal) issO initialy. At ¢y, therising edge of the clock, the state register
samples the state_next signal. After T, (at t2), the state register stores the value and
reflects the value in its output, the state_reg signal. This means that the FSM moves to
the s0 state. At t3, the a input changes from'0’ to'1’. According to the ASM chart, the
condition of the decision box is met and the true branch is taken. In terms of the circuit,
the change of the a signal activates both the next-state logic and the Mealy output logic.
Afterthedelay of T,..: (&t t4), the state next signal changesto s1. Similarly, the Mealy
output, y0, changes to '1" after Ty pue(me) (a t5). At tg, the a signal switches back
to’0'. The state next and y0 signals respond accordingly. Note that the change of the
state_next signal has no effect on the state register (i.e., the state of the FSM). At ¢, the
a signal changesto’1’ again, and thusthe state_next and y0 signals become s1 and ' 1’
after the delays. At tg, the current period ends and a new rising edge occurs. The state
register samplesthe state_next signal and storesthe s1 valueinto the register. After T,
(at tg), the register obtains its new value and the FSM moves to the s1 state. The change
inthestate_reg signal triggers the next-state logic, Mealy output |ogic and M oore output
logic. After the T,...: delay (at 1), the next-state logic generates a new value of s0. We
assume that Tty ¢put(mo) 8N Toutput(me) &€ Similar. After this delay (at ¢11), the Mealy
output, yo0, is deactivated, and the Moore output, y1, is activated. The y1 signal remains
asserted for the entire clock cycle. At 12, anew clock edge arrives, the state_reg signal
changesto sO after theT,, delay (at t13), and the FSM returnsto the sO state. They1 signal
is deactivated after the To,iput (moy delay (at t14).

Thetiming diagram illustrates the mgjor difference between an ASM chart and aregular
flowchart. In an ASM chart, the state transition (or ASM block transition) occurs only at
the rising edge of the clock signal. Within the clock period, the Boolean condition and the
next state may change but have no effect on the system state. The new state is determined
solely by the values sampled at the rising edge of the clock.

10.4 MOORE MACHINE VERSUS MEALY MACHINE

Aswediscussedin Section 10.1, an FSM can be classified into aMooremachineor aMealy
machine. Intheoretical computer science, aMoore machine and aMealy machine are con-
sidered to have similar computation capability (both can recognize “regular expressions’),
athough a Mealy machine normally accomplishes the same task with fewer states. When
the FSM is used as acontrol circuit, the control signals generated by a Moore machine and
a Mealy machine have different timing characteristics. Understanding the subtle timing
differenceiscritical for the correctness and efficiency of acontrol circuit. We useasimple

326 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

t b 3 Wtts t7 ts to trotn tz tis tia

ok | I—i_—
a E_—ﬂ | |
state_ X s0 X s1 X s0

reg

z::f— s0 X st X s0 X s X s0

JuEE | :

Jom

o Thex——

——Toutput(mo)

>

Toutpul(me)

Figure10.11 FSM timing diagram.

edge detection circuit to illustrate the difference between a Mealy machine and a Moore
machine.

10.4.1 Edge detection circuit

We assumethat asynchronoussystemisconnectedto aslowly varyinginput signal, strobe,
which can beassertedto’ 1’ for along time (much greater than the clock period of the FSM).
An edge detection circuit is used to detect therising edge of the strobe signal. It generates
a“short” pulse when the strobe signa changes from’0’ to’'1’. The width of the output
pulse is about the same or less than a clock period of the FSM. Since the intention is to
show the difference between a Mealy machine and a Moore machine, we are deliberately
vague about the specification of the width and timing of the output pulse.

Thebasic designideaisto construct an FSM that hasazero state and aone state, which
represent that the input hasbeen’0’ or ' 1’ for along period of time respectively. The FSM
has asingle input signal, strobe, and asingle output signal. The output will be asserted
“momentarily” when the FSM transits from the zero state to the one State.

We first consider a design based on a Moore machine. The state diagram is shown in
Figure 10.12(a). There are three states. In addition to the zero and one states, the FSM
also hasan edge state. When strobe becomes’1’ inthezero state, itimpliesthat strobe
changesfrom’0’ to’1'. The FSM movesto the edge state, in which the output signal, p1,
isasserted. In normal operation, strobe should continueto be’1’ and the FSM moves to
the one state at the next rising edge of the clock and staysthere until strobe returnsto’0’.

MOORE MACHINE VERSUS MEALY MACHINE 327

strobe’

strobe’'

strobe /
p3<=1

strobe /

strobe’ strobe'
strobe' /

p3<=1

strobe /
p3<=1

\)strobe

strobe

(=0

(2 () ©

strobe

strobe' strobe'

strobe

Figure10.12 Edge detector state diagrams.

If strobe isreally short and changesto 'O’ in the edge state, the FSM will return to the
zero State. A representative timing diagram is shown in the top portion of Figure 10.13.

The second design is based on a Mealy machine. The state diagram is shown in Fig-
ure 10.12(b). It consists of only the zero and one states. When strobe changes from’0’
to’l" inthe zero state, the FSM moves to the one state. From the state diagram, it seems
that the output signal, p2, is asserted when the FSM transit from the zero state to the one
state. Actually, p2 is asserted in the zero state whenever strobe is’1’. When the FSM
moves to the one state, p2 will be deasserted. The timing diagram is shown in the middle
portion of Figure 10.13.

For demonstration purposes, we also include a version that combines both types of
outputs. The third design inserts a delay state into the Mealy machine-based design
and prolongs the output pulse for one extra clock cycle. The state diagram is shown in
Figure 10.12(c). In this design, the FSM will assert the output, p3, in the zero state, asin
the second design. However, the FSM moves to the delay state afterward and forces p3
to be asserted for another clock cycle by placing the assertion on both transition edges of
the delay state. Note that since p3 is asserted in the delay state under al transition arcs,
it impliesthat p3 will be asserted in the delay state regardless of the input condition. The
behavior of the FSM in the delay stateis similar to the edge state of the Moore machine-
based design, and we can also move the output assertion, p3<=1, into the bubble of the
delay state. Thetiming diagram is shown in the bottom portion of Figure 10.13.

328 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

clk

strobe |_|_|
state d
(moore) zero edge one zero

p1

state
(mealy) < zero >< one >< zero
p2

state < zero >< dela >< one >< zero
(mealy2) v
& 1]

Figure10.13 Edge detector timing diagram.

10.4.2 Comparison of Moore output and Mealy output

All three edge detector designs can generatea“ short” pulsewhen theinput changesfrom’ 0’
to’1’, but there are subtle differences. Understanding the differencesis the key to deriving
acorrect and efficient FSM and an FSM-based control circuit.

Therearethree major differencesbetween the M oore machine and M ealy machine-based
designs. First, a Mealy machine normally requires fewer states to perform the same task.
This is due to the fact that its output is a function of states and external inputs, and thus
several possible output values can be specified in onestate. For example, inthezero state of
the second design, p2 can beeither 'O’ or 1, depending on the value of strobe. Thus, the
Mealy machine-based design requires only two states whereas the Moore machine-based
design requires three states.

Second, a Mealy machine can generate a faster response. Since a Mealy output is
a function of input, it changes whenever the input meets the designated condition. For
example, in Mealy machine-based design, if the FSM isin the zero state, p2 is asserted
immediately after strobe changesfrom’0’ to’1’, as shown in thetiming diagram. On the
other hand, aMoore machinereactsindirectly to input changes. The Moore machine-based
design al so sensesthe changesof strobe inthezero state. However, it hastowait until the
next state (i.e., the edge state) to respond. The change causesthe FSM to movetothe edge
state. At the next rising edge of the clock, the FSM moves to this state and p1 responds
accordingly, as shown in the timing diagram. In a synchronous system, the distinction

VHDL DESCRIPTION OF AN FSM 329

between a Mealy output and a Moore output normally means a delay of one clock cycle.
Recall that the input signal of a synchronous system is sampled only at the rising edge of
the clock. Let us assume that the output of the edge detection circuit is used by another
synchronous system. Consider the first transition edge of strobe in Figure 10.13. The p2
signal can be sampled at ¢;. However, the p1 signal is not available at that time because
of the clock-to-q delay and output logic delay. Its value can be sampled only by the next
rising edge at 5.

Thethird differenceinvolvesthe control of thewidth and timing of the output signal. Ina
Mealy machine, the width of an output signal is determined by theinput signal. The output
signal is activated when the input signal meets the designated condition and is normally
deactivated when the FSM enters a new state. Thus, its width varies with input and can be
very narrow. Also, aMealy machineis susceptibleto glitchesin theinput signal and passes
these undesired disturbances to the output. Thisis shown in the p2 signal of Figure 10.13.
On the other hand, the output of a Moore machine is synchronized with the clock edge
and its width is about the same as a clock period. It is not susceptible to glitches from the
input signal. Although the output logic can still introduce glitches, this can be overcome
by clever output buffering schemes, which are discussed in Section 10.7.

As mentioned earlier, our focus on FSM is primarily on its application as a control
circuit. From this perspective, selection between a Mealy machine and a Moore machine
depends on the need of control signals. We can divide control signalsinto two categories:
edge-sensitive and level-sensitive. An edge-sensitive control signal is used as input for a
sequential circuit synchronized by the same clock. A simple example is the enable signal
of acounter. Since the signal is sampled only at the rising edge of the clock, the width of
the signal and the existence of glitches do not matter aslong asit is stable during the setup
and hold times of the clock edge. Both the Mealy and the Moore machines can generate
output signals that meet this requirement. However, aMealy machine is preferred since it
uses fewer states and responds one clock faster than does a Moore machine. Note that the
p3 signal generated by the modified Mealy machine will be active for two clock edges and
isactually incorrect for an edge-sensitive control signal.

A level-sensitive control signal meansthat asignal hasto be asserted for acertain amount
of time. When asserted, it has to be stable and free of glitches. A good example is the
writeenable signal of an SRAM chip. A Moore machineis preferred sinceit can accurately
control the activation timeof itsoutput, and can shield the control signal frominput glitches.
Because of the potential glitches, the p3 signal is again not desirable.

10.5 VHDL DESCRIPTION OF AN FSM

The block diagram of an FSM shown in Figure 10.1 is similar to that of the regular se-
quential circuit shown in Figure 8.5. Thus, derivation of VHDL codefor an FSM issimilar
to derivation for a regular sequential circuit. We first identify and separate the memory
elements and then derive the next-state logic and output logic. There are two differences
in the derivation. The first is that symbolic states are used in an FSM description. To
capture this kind of representation, we utilize VHDL's enumeration data type for the state
registers. The second differenceisin the derivation of the next-state logic. Instead of using
aregular combinationa circuit, such as an incrementor or shifter, we have to construct the
code according to a state diagram or ASM chart.

We use the previous memory controller FSM to show the derivation procedure in the
following subsections.

330 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

Mealy
output we_me
[—— logic
— d
next-
mem state state_reg
w logic state_next —> Moore
burst we
output
logic oe
clk

resset

Figure10.14 Block diagram of amemory controller FSM.

10.5.1 Multi-segment coding style

The first method is to derive the VHDL code according to the blocks of a block diagram,
and we cdll it the multi-segment coding style. The block diagram of the previous memory
controllerisshowninFigure10.14. Therearefour blocksandweuseaVHDL code segment
for each block. The complete VHDL code is shown in Listing 10.1.

Listing10.1 Multi-segment memory controller FSM

library ieee;
use ieee.std_logic_1164. all
entity mem_ctrl is

port(
5 clk, reset: in std_logic;
mem, rw, burst: in std_logic;

oe, we, we_me: OUt std_logic
)
end mem_ctrl ;
10
architecture mult_seg_arch of mem_ctrl is
type mc_state_type IS
(idle, readl, read2, read3, read4, write);
signal state_reg, state_next: mc_state_type;
15 begin
— state register
process(clk,reset)
begin
if (reset=’1’) then
20 state_reg <= idle;
elsif (clk’event and clk=’1’) then
state_reg <= state_next;

end if;
end process;
S —— next—state logic
process(state_reg ,mem,rw,burst)
begin

case state_reg iS
when idle =>
£y if mem=’1’ then

35

40

5

50

55

60

65

70

75

80

VHDL DESCRIPTION OF AN FSM

if rw=’>1’ then
state_next <= readl;
else
state_next <= write;
end if;
else
state_next <= idle;
end if;
when write =>
state_next <= idle;
when read1 =>
if (burst=’1’) then
state_next <= read?2;
else
state_next <= idle;
end if;
when read2 =>
state_next <= read3;
when read3 =>
state_next <= read4;
when read4 =>
state_next <= idle;
end case;
end process;
—— Moore output logic
process(state_reg)
begin
we <= ’0’; — default value
oe <= ’0’; — default value

case state_reg IS
when idle =>
when write =>
we <= ’17;
when readl =>
oe <= ’17;
when read2 =>
oe <= 17,
when read3 =>
oe <= ’17;
when read4 =>
oe <= ’17;
end case;
end process;

—— Mealy output logic

process(state_reg ,mem,rw)

begin
we_me <= ’07’; —
case state_reg iS
when idle =>

default value

if (mem=1’) and (rw=’0’) then

we_me <=
end if;
when write =>

)1);

331

332 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

when readl =>
85 when read2 =>
when read3 =>
when read4 =>
end case;
end process;
o end mult_seg_arch;

Inside the architecture declaration, we use the VHDL's enumeration data type. The data
typeisdeclared as

type mc_state_type iS (idle,readl,read2,read3,read4,write);
The syntax of the enumeration data type statement is very simple:
type type_name iS (list_of_all_possible_values);

It simply enumerates all possible valuesin alist. In this particular example, we list al the
symbolic state names. The next statement then usesthis newly defined type asthe datatype
for the state register’s input and output:

signal state_reg, state_next: mc_state_type;

The architecture body is divided into four code segments. The first segment is for the
state register. Its codeis like that of aregular register except that a user-defined data type
is used for the signal. We use an asynchronous reset signal for initialization. The state
register is cleared to the idle state when the reset signal is asserted.

The second code segment is for the next-state logic and is the key part of the FSM
description. It is patterned after the ASM chart of Figure 10.9. We use a case statement
with state_reg astheselection expression. Thestate_reg signa isthe output of the state
register and represents the current state of the FSM. Based on its value and input signal, the
next state, denoted by the state next signal, can be determined. Asshownintheprevious
segment, the next state will be stored into the state register and becomes the new state at
therising edge of the clock. The state next signal can be derived directly from the ASM
block. For asimple ASM block, such as the read2 block, there is only one exit path and
the state_next signal is very straightforward:

state_next <= idle;

For ablock with multiple exit paths, we can useif statementsto code the decision boxes.
The Boolean condition inside a decision box can be directly translated to the Boolean
expression of the if statement, and the two exit paths can be expressed as the then branch
and the else branch of the if statement. Thus, we can follow the decision boxes and derive
the VHDL code for the state_next signal accordingly. For example, in the idle block,
the cascade decision boxes can be trandated into a nested if statement:

if mem=’1’ then
if rw="1’ then
state_next <= readl;
else
state_next <= write;
end if;
else
state_next <= idle;
end if;

VHDL DESCRIPTION OF AN FSM 333

we_me
we

oe

mem —— | next-state/
output d

J— i q
w logic state_reg

burst ———— state_next ’7>
clk

resset

Figure10.15 Block diagram of atwo-segment memory controller FSM.

Notethat theASM hasthree possibleexit pathsfromtheidle block, andthusthestate next
signal has three possible values.

Thethird code segment is the Moore output logic. Again, we use a case statement with
state_reg asthe selection expression. Note that since the Moore output is a function of
state only, no input signal is in the sensitive list. Our code follows the ASM chart. Two
sequential signal assignment statements are used to represent the default output value:

we <= ’07;
oe <= ’07;

If an output signal is asserted inside a state box, we put a signal assignment statement in
the corresponding choice in the VHDL code to overwrite the default value.

Thefourth code segment isthe Mealy output logic. Notethat someinput signal isnow in
thesensitivelist. Again, following the ASM chart, we use acase statement with state_reg
as the selection expression and use an if statement for the decision box. The Mealy output,
the we_me signal, will be assigned to the designated value according to the input condition.

We intentionally use the case statement to demonstrate the relationship between the
code and the ASM chart. It may become somewhat cumbersome. The segment can aso be
written in a more compact but ad hoc way. For example, the Mealy output |ogic segment
can be rewritten as

we_me <= 1’ when ((state_reg=idle) and (mem=’1’) and
(rw="0")) else
70’;

10.5.2 Two-segment coding style

The two-segment coding style divides an FSM into a state register segment and a com-
binational circuit segment, which integrates the next-state logic, Moore output logic and
Mealy output logic. In VHDL code, we need to merge the three segments and move the
state_next, oe, we and we_me signalsinto asingle process. The block diagram is shown
in Figure 10.15. The architecture body of this revised code is shown in Listing 10.2.

Listing 10.2 Two-segment memory controller FSM

architecture two_seg_arch Of mem_ctrl is
type mc_state_type IS

334 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

(idle, readl, read2, read3, read4,

write);

signal state_reg, state_next: mc_state_type;

s begin
—— state register
process(clk,reset)
begin

if (reset=’1’) then
10 state_reg <= idle;
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
end process;

15 —— next—state logic and output logic
process(state_reg ,mem,rw,burst)
begin

oe <= ’07; — default values
we <= ’07;
20 we_me <= ’07;
case state_reg iS
when idle =>
if mem=’1’ then
if rw=’1’ then

25 state_next <= readl;
else
state_next <= write;
we_me <= ’17;
end if;
0 else
state_next <= idle;
end if;

when write =>
state_next <= idle;
35 we <= ’17;
when readi =>
if (burst=’1’) then
state_next <= read2;
else
20 state_next <= idle;
end if;
oe <= ’17;
when read2 =>
state_next <= read3;
5 oe <= ’17;
when read3 =>
state_next <= read4;
oe <= ’17;
when read4 =>
50 state_next <= idle;
oe <= ’17;
end case;
end process;
end two_seg_arch;

VHDL DESCRIPTION OF AN FSM 335

syn_clr

to idle

exp1 exp2 syn_clr' » exp1 syn_clr' « exp2

to state si to state sj to state si to state sj

(a) Original state (b) Revised state with synchronous clear

Figure10.16 Adding synchronous clear to a state diagram.

10.5.3 Synchronous FSM initialization

An aternative for the asynchronous initialization is to use a synchronous clear signal. To
achieve this goal, we have to add an additional transition arc for every state. The logic
expression of this arc corresponds to the assertion of the synchronous clear signal and is
given preference over other conditions. Assume that the syn_clr signal is added to the
FSM for this purpose and an FSM will be forced to the id1e statewhen the syn_clr signd
is asserted. The required revision for astate is shown in Figure 10.16.

Although revising a state diagram or an ASM chart introduces a significant amount of
clutter, this can be done easily in VHDL. We just add an extra if statement to check the
syn_clr signal in the next-state logic segment. If the condition syn_clr=’1"’ istrue, the
idle value will be assigned to the state_next signal. Otherwise, the FSM takes the else
branch and performsthe normal transition. The needed revisionsfor the memory controller
FSM example are shown below.

entity mem_ctrl is
port (

syn_clr: in std_logic; —— new input
architecture mult_seg_arch Of mem_ctrl is
begin

—— next—state logic

process(state_reg ,mem,rw,burst,syn_clr)

begin
if (syn_clr=’1’) then —— synchronous clear
state_next <= idle;
else —— original state_next values

case state_reg iS
when idle =>

336 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

end case;
end if;
end process;

10.5.4 One-segment coding style and its problem

We may be tempted to make the code more compact and describe the FSM in a single
segment, as shown in Listing 10.3.

Listing 10.3 One-segment memory controller FSM

architecture one_seg_wrong_arch oOf mem_ctrl is
type mc_state_type iS
(idle, readl, read2, read3, read4, write);
signal state_reg: mc_state_type;

s begin
process(clk,reset)
begin
if (reset=’1’) then
state_reg <= idle;
10 elsif (clk’event and clk=’1’) then
oe <= ’07; — default values
we <= ’0’;
we_me <= ’07;
case state_reg iS
15 when idle =>
if mem=’1’ then
if rw=>1’ then
state_reg <= readl;
else
20 state_reg <= write;
we_me <= ’17;
end if;
else
state_reg <= idle;
25 end if;
when write =>
state_reg <= idle;
we <= ’17;
when read1l =>
0 if (burst=’1’) then
state_reg <= read2;
else
state_reg <= idle;
end if;
35 oe <= ’17;
when read2 =>
state_reg <= read3;
oe <= ’17;
when read3 =>
20 state_reg <= read4;

oe <= 17,

VHDL DESCRIPTION OF AN FSM 337

,— d q we_me
>
|———d q we
mem —— next-state/ >
output
w— logic ______J___d a—
d q oe
[E— state_next
burst | > >
clk

resset

Figure10.17 FSM with unwanted output buffers.

when read4 =>
state_reg <= idle;
oe <= ’17;
a5 end case;
end if;
end process;
end one_seg_wrong_arch;

Unfortunately, this code suffers the same problem as that of the similar regular sequen-
tial circuit code discussed in Section 8.7. Recall that a left-hand-side signal within the
clk’event and clk=’1’ branchinfersaregister. Whilethisisthe desired effect for the
state_reg signal, three unwanted registers are inferred for the oe, we and we_me signals,
as shown in Figure 10.17 (for clarity, the connection lines for the c1k and reset signals
are not shown). These signals are delayed by one clock cycle and the code does not meet
the specification described by the ASM chart. Although we can fix the problem by using a
separate process for the output logic, the resulting code is less clear. We generally refrain
from this style of coding.

10.5.5 Synthesis and optimization of FSM

After dividing a sequential circuit into aregister and a combinational circuit, we can apply
RT-level optimization techniques for the combinational circuit. However, these techniques
are mainly for regular combinational circuits. The next-state logic and output logic of
the FSMs are normally random in nature since the code includes primarily case and if
statements and does not involve complex operators. These circuits are implemented by
gate-level components, and there is very little optimization that we can do when writing
RT-level VHDL code. Utilizing two-segment coding provides some degree of sharing
since the Boolean expressions inside the decision boxes are used by both next-state logic
and output logic.

Theoretically, thereis atechnique to identify the “equivalent states” of an FSM. We can
merge these statesinto one state and thus reduce the number of states of the FSM. However,
in a properly designed FSM, the chance of finding a set of equivalent states is very slim,
and thistechniqueis not always applied in the design and synthesis process.

338 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

There is one other unique opportunity to reduce the complexity of the combinational
circuit of the FSM: assigning proper binary representations for the symbolic states. This
issueis discussed in the next section.

The multi- and two-segment coding approach of previous subsections is very general
and we can use the two VHDL listings as templates. The key to developing good VHDL
code for an FSM is the derivation of an efficient and correct state diagram or ASM chart.
Onceit iscompleted, obtaining VHDL code becomes more or |essamechanical procedure.
Some design entry software can accept a graphical state diagram and convert it to VHDL
code automatically.

10.6 STATE ASSIGNMENT

Our discussion of FSM sofar utilizesonly symbolic states. During synthesis, each symbolic
state has to be mapped to a unique binary representation so that the FSM can berealized by
physical hardware. State assignment is the process of mapping symbolic values to binary
representations.

10.6.1 Overview of state assignment

For asynchronous FSM, thecircuit isnot delay sensitive and isimmuneto hazards. Aslong
as the clock period is large enough, the synthesized circuit will function properly for any
state assignment. However, physical implementation of next-state logic and output logicis
different for each assignment. A good assignment can reduce the circuit size and decrease
the propagation delays, which in turn, increases the clock rate of the FSM.

An FSM withn symbolic statesrequires astate register of at least [log, 7] bitsto encode
al possible symbolic values. We sometimes utilize more bitsfor other purposes. There are
several commonly used state assignment schemes:

e Binary (or sequential) assignment: assigns states according to a binary sequence.
This scheme uses aminimal number of bits and needs only a [log, n]-bit register.

e Gray code assignment: assigns states according to a Gray code sequence. This
scheme aso uses a minimal number of bits. Because only one bit changes between
the successive code words in the sequence, we may reduce the complexity of next-
state logic if assigning successive code words to neighboring states.

e One-hot assignment: assigns one bit for each state, and thus only asingle bit is’1’
(or “hot”) at atime. For an FSM with n states, this scheme needs an n-bit register.

e Almost one-hot assignment: is similar to the one-hot assignment except that the all-
zero representation ("0 - - - 0") isaso included. The all-zero state is frequently used
astheinitia state since it can easily be reached by asserting the asynchronous reset
signal of D FFs. This scheme needs an (n — 1)-bit register for n states.

Although one-hot and almost one-hot assignments need moreregister bits, empirical data
from various studies show that these assignments may reduce the circuit size of next-state
logic and output logic. Table 10.1 illustrates these schemes used for the previous memory
controller FSM.

Obtaining the optimal assignment isvery difficult. For example, if we choosethe one-hot
schemefor an FSM with n states, therearen! (whichisworsethan 2™) possibleassignments.
Itisnot practical to obtain the optimal assignment by examining all possible combinations.
However, there exists special software that utilizes heuristic algorithms that can obtain a
good, suboptimal assignment.

STATE ASSIGNMENT 339

Table10.1 State assignment example

Binary Gray code One-hot Almost one-hot
assignment assignment assignment assignment
idle 000 000 000001 00000
readl 001 001 000010 00001
read2 010 011 000100 00010
read3 011 010 001000 00100
read4 100 110 010000 01000
write 101 111 100000 10000

10.6.2 State assignment in VHDL

In some situations, we may want to specify the state assignment for an FSM manually.
This can be done implicitly or explicitly. Inimplicit state assignment, we keep the original
enumeration data type but pass the desired assignment by other mechanisms. The VHDL
standard does not define any rule for mapping the values of an enumeration data type to a
set of binary representations. It isperformed during synthesis. One way to pass the desired
statement assignment to software is to use a VHDL feature, known as a user attribute, to
set a “directive” to guide operation of the software. A user attribute has no effect on the
semantics of VHDL code and is recognized only by the software that definesit. The IEEE
1076.6 RTL synthesis standard defines an attribute named enum_encoding for encoding
the values of an enumeration datatype. This attribute can be used for state assignment. For
example, if we wish to assign the binary representations "0000", "0100", "1000", "1001",
"1010" and "1011" to the idle, write, readl, read2, read3 and read4 states of the
memory controller FSM, we can add the following VHDL segment to the original code:

type mc_state_type iS (idle,write,readl,read2,read3,read4);
attribute enum_encoding: string;
attribute enum_encoding of mc_state_type:

type is "0000 0100 1000 1001 1010 1011";

This user attribute is very common and should be accepted by most synthesis software.

Synthesis software normally provides several simple state assignment schemes similar
to the ones discussed in the previous subsection. If we don’t utilize a user attribute, we
can specify the desired scheme as a parameter while invoking the software. If nothing is
specified, the software will perform the state assignment automatically. It normally selects
between binary assignment and one-hot assignment, depending on the characteristics of the
targeting device technology. We can aso use specialized FSM optimization software to
obtain agood, suboptimal assignment.

We can explicitly specify the desired state assignment by replacing the symbolic values
with the actual binary representations, and use the std_logic_vector datatype for this
purpose. To demonstrate this scheme, weincorporate the previous state assignment into the
memory controller FSM. The revised multi-segment VHDL codeis shown in Listing 10.4.

Listing 10.4 Explicit user-defined state assignment

architecture state_assign_arch of mem_ctrl is
constant idle: std_logic_vector (3 downto 0):="0000";
constant write: std_logic_vector (3 downto 0):="0100";
constant readl: std_logic_vector (3 downto 0):="1000";

340 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

5 constant read2: std_logic_vector (3 downto 0):="1001";
constant read3: std_logic_vector (3 downto 0):="1010";
constant read4: std_logic_vector (3 downto 0):="1011";

signal state_reg,state_next: std_logic_vector (3 downto 0);
begin

10 —— state register
process(clk,reset)
begin

if (reset=’1’) then
state_reg <= idle;
15 elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
end process;
— next—state logic
20 process(state_reg ,mem,rw,burst)
begin
case state_reg iS
when idle =>
if mem=’1’ then

25 if rw=’"1’ then
state_next <= readl;
else
state_next <= write;
end if;
£y else
state_next <= idle;
end if;

when write =>
state_next <= idle;
3 when read1l =>
if (burst=’1’) then
state_next <= read2;
else
state_next <= idle;
40 end If,
when read2 =>
state_next <= read3;
when read3 =>
state_next <= read4;
5 when read4 =>
state_next <= idle;
when others =>
state_next <= idle;
end case;
50 end process;
—— Moore output logic
process(state_reg)

begin
we <= ’0’; — default value
55 oe <= ’0’; — default value

case state_reg isS
when idle =>

STATE ASSIGNMENT 341

when write =>
we <= ’17;
60 when readl =>
oe <= ’17;
when read2 =>
oe <= ’17;
when read3 =>
65 oe <= ’17;
when read4 =>
oe <= 17,
when others =>
end case;
7 end process;
—— Mealy output logic
we_me <= ’1’ when ((state_reg=idle) and (mem=’1’) and
(rw="0)) else
;O;;
s end state_assign_arch;

Inthiscode, weuse std_logic_vector (3 downto 0) asthestateregister'sdatatype.
Six constants are declared to represent the six symbolic state names. Because of the choice
of the constant names, the appearance of the code is very similar to that of the original
code. However, the name here is just an alias of a binary representation, but the namein
the original code is a value of the enumeration data type. One difference in the next-state
logic code segment is an extrawhen clause:

when others =>
state_next <= idle;

Thisrevision is necessary since the selection expression of the case statement, state_reg,
now is with the std_logic_vector (3 downto 0) data type, and thus has 9* possible
combinations. The when others clauseis used to cover all the unused combinations. This
mean that when the FSM reaches an unused binary representation (e.g., "1111"), it will
return to the idle state in the next clock cycle. We can also use

when others =>
state_next <= "----";

if the software accepts the don’t-care expression. A when others clause is also added for
the Moore output code segment.

Theexplicit state assignment allows usto have more control over the FSM but makesthe
code more difficult to maintain and prevents the use of FSM optimization software. Unless
thereis aspecial need, using an enumeration data type for state representation is preferred.

10.6.3 Handling the unused states

When we map the symbolic states of an FSM to binary representations, there frequently
exist unused binary representations (or states). For example, there are six states in the
memory controller FSM. If the binary assignment is used, a 3-hit (i.e., [log, 6]) register
is needed. Since there are 23 possible combinations from 3 bits, two binary states are not
used in the mapping. If one-hot state assignment is used, there are 58 (i.e., 26 — 6) unused
states.

342 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

During the normal operation, the FSM will not reach these states, however, it may
accidentally enter an unused state due to noise or an external disturbance. One question is
what we should do if the FSM reaches an unused state.

In certain applications, we can simply ignore the situation. It is because we assume that
the error will never happen, or, if it happens, the system can never recover. In the latter
case, there is nothing we can do with the error.

On the other hand, some applications can resume from a short period of anomaly and
continue to run. In this case we have to design an FSM that can recover from the unused
states. It isknown as afault-tolerant or safe FSM. For an FSM coded with an explicit state
assignment, incorporating thisfeature is straightforward. We just specify the desired action
in the when others clause of the case statement. For example, the state_assign arch
architecture in Listing 10.4 is a safe FSM. The code specifies that the FSM returns to the
idle stateif it enters an unused state:

when others =>
state_next <= idle;

If desired, we can revise the code to add an error state for special error handling:

when others =>
state_next <= error;

Thereisno easy way to specify asafe FSM if the enumeration datatypeisused. Sinceall
possible values of the enumeration datatype are used in the case statement of the next-state
logic, thereis no unused state in VHDL code. The unused states emerge only later during
synthesis, and thus they cannot be handled in VHDL code. Some software accepts an
artificially added when other s clause for the unused states. However, by VHDL definition,
this clause is redundant and may not be interpreted consistently by different synthesis
software.

10.7 MOORE OUTPUT BUFFERING

We can add a buffer by inserting aregister or aD FF to any output signal. The purpose of
an output buffer is to remove glitches and minimize the clock-to-output delay (7.,). The
disadvantage of this approach is that the output signal is delayed by one clock cycle.

Since the output of an FSM is frequently used for control purposes, we sometimes need
afast, glitch-free signal. We can apply the regular output buffering scheme to a Mealy or
Moore output signal. The buffered signal, of course, is delayed by one clock cycle. For
a Moore output, it is possible to obtain a buffered signal without the delay penalty. The
following subsections discuss how to design an FSM to achieve this goal.

10.7.1 Buffering by clever state assignment

In atypical Moore machine, we need combinational output logic to implement the output
function, asshownin Figure 10.1. Sincethe Mooreoutput isnot afunction of input signals,
it isshielded from the glitches of the input signals. However, the state transition and output
logic may still introduce glitches to the output signals. There are two sources of glitches.
Thefirst is the possible simultaneous multiple-bit transitions of the state register, as from
the "111" state to the "000" state. Even the register bits are controlled by the same clock,
the clock-to-q delay of each D FF may be slightly different, and thus a glitch may show up
in the output signal. The second source is the possible hazards inside the output logic.

MOORE OUTPUT BUFFERING 343

Table10.2 State assignment for the memory controller FSM output buffering

q3q2 4190 93929190

(oe) (we)
idle 00 00 0000
readl 10 00 1000
read2 10 01 1001
read3 10 10 1010
read4 10 11 1011
write 01 00 0100

Recall that the clock-to-output delay (1,) is the sum of the clock-to-q delay (7,) of
the register and the propagation delay of the output logic. The existence of the output logic
clearly increases the clock-to-output delay.

One way to reduce the effect of the output logic isto eliminate it completely by clever
stateassignment. Inthisapproach, wefirst allocate aregister bit to each Moore output signal
and specify its value according to the output function. Again, let us consider the memory
controller FSM. We can assign two register bits according to the output values of the oe
and we signals, as shown in thefirst column of Table 10.2. Since some states may have the
same output patterns, such asthe read1, read2, read3 and read4 states of the memory
controller, we need to add additional register bits to ensure that each state is mapped to a
unique binary representation. In this example, we need at least two extrabits to distinguish
thefour read states, as shown in the second column of Table 10.2. We then can completethe
state assignment by filling the necessary valuesfor the id1le and write states, asshownin
the third column of Table 10.2. In this state assignment, the value of oe isidentical to the
value of state_reg(3), and the value of we isidentical to the value of state_reg(2).
In other words, the output function can be realized by connecting the output signals to the
two register bits, and the output logic is reduced to wires. This implementation removes
the sources of glitches and reduces 7, to 7.

This design requires manual state assignment and access to individual register bits.
Only the explicit state assignment can satisfy the requirement. The state_assign_arch
architecture in Listing 10.4 actually uses the state assignment from Table 10.2. We can
replace the Moore output logic code segment by connecting the output signals directly to
the register’s output:

—— Moore output logic
oe <= state_reg(3);
we <= state_reg(2);

Because the state register is al so used as an output buffer, this approach potentially uses
fewer register bitsfor certain output patterns. Thedisadvantage of this method isthe manual
manipulation of the state assignment. It becomes tedious as the number of states or output
signalsgrowslarger. Furthermore, the assignment has to be modified whenever the number
of output signals is changed, the number of states is changed, or the output function is
modified. This makes the code error-prone and difficult to maintain.

344 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

o

state_reg output_i

§ d delayed
_ qr—e

next state_next output output
state

on >
input logic > ogic
clk
(a) Moore output with aregular output buffer
state_reg output_next
L d J d q normal
-] q -
next state_next next > output
state output
input logic > logic
clk

(b) Moore output with alook-ahead output buffer

Figure10.18 Block diagrams of output buffering schemes.

10.7.2 Look-ahead output circuit for Moore output

A more systemati c approach to Moore output buffering isto use alook-ahead output circuit.
Thebasicideaisto buffer the next output value to cancel the one-clock delay introduced by
the output buffer. In most systems, we don’t know asignal’s next or future value. However,
inan FSM, the next value of the state register is generated by next-state logic and is always
available.

Thisscheme can best be explained by examining thebasic FSM block diagram. Theblock
diagram of an FSM with a regular output buffering structure is shown in Figure 10.18(a).
The output signals, of course, are delayed by one clock cycle. To cancel the effect of the
delay, we can feed the output buffer with the next output value. After being delayed by one
clock cycle, the next output value becomes the current output value, which is the desired
output. Obtaining the next output is very straightforward. Recall that the current output is
afunction of the current state, which isthe output of the state register, labeled state_reg
in the diagram. The next output should be a function of the next state, which is the output
of next-statelogic, labeled state_next inthediagram. To obtain the next output, we need
only disconnect the input of the output logic from the state_reg signal and reconnect it
tothe state_next signal, as shown in Figure 10.18(b).

Once understanding the block diagrams of Figure 10.18, we can develop the VHDL
code accordingly. Again, we use the memory controller FSM as an example. The we_me
output will be ignored since it is irrelevant to the Moore output buffering. Note that the
state register and next-state logic are the same as in the original block diagram, and only
the Moore output logic part is modified. For comparison purposes, we show the VHDL
codes for both diagrams. The codes are based on the mutli_seg_arch architecture of
Section 10.5.1. The code of the memory controller FSM with a regular output buffer is
shown in Listing 10.5.

5

10

15

20

25

30

35

40

45

50

MOORE OUTPUT BUFFERING

Listing 10.5 FSM with aregular output buffer

345

type mc_state_type IS

(idle, readl, read2, read3, read4,
sighal state_reg, state_next: mc_state_type;
signal oe_i, we_i, oe_buf_reg, we_buf_reg: std_logic;

begin

—— state register
process(clk,reset)
begin
if (reset=’1’) then
state_reg <= idle;
elsif (clk’event and clk=’1’)
state_reg <= state_next;
end if;
end process;
—— output buffer
process(clk,reset)
begin
if (reset=’1’) then
oe_buf_reg <= ’0’;
we_buf_reg <= ’07;
elsif (clk’event and clk=’1’)
oe_buf_reg <= oe_ij;
we_buf_reg <= we_i;
end if;
end process;

— next—state logic
process(state_reg ,mem,rw,burst)
begin

case state_reg iS
when idle =>
if mem=’1’ then
if rw="1’ then

then

then

state_next <= readl;

else
state_next <= write;
end if;
else
state_next <= idle;
end if;

when write =>
state_next <= idle;
when read1l =>
if (burst=’1’) then
state_next <= read2;
else
state_next <= idle;
end if;
when read2 =>
state_next
when read3 =>
state_next <= read4;

A
I

= read3;

architecture plain_buffer_arch Of mem_ctrl is

write);

346 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

when read4 =>
state_next <= idle;
55 end case;
end process;
—— Moore output logic
process(state_reg)

begin
60 we_i <= ’0’; — default value
oe_i <= ’0’; — default value

case state_reg iS
when idle =>
when write =>

65 we_i <= ’17;
when readl =>
oe_i <= 17,
when read2 =>
oe_i <= 17,
70 when read3 =>
oe_i <= 17,
when read4 =>
oe_i <= 17,
end case;
7 end process;
— output

we <= we_buf_reg;
oe <= oe_buf_reg;
end plain_buffer_arch;

Inthiscode, werenametheoriginal output signals of the output logic with apost-fix “ _i”
(for intermediate output signals). These signals are then connected to the output buffers.

To obtain the VHDL code for the look-ahead output buffer, we change the input of the
output logic. Thiscan be done by substituting the state_reg signal with the state_next
signal in the case statement and the sensitivity list of the process. To make the code more
descriptive, we use the post-fix “_next” for the next output signals. The modified code is
shown in Listing 10.6.

Listing10.6 FSM with alook-ahead output buffer

architecture look_ahead_buffer_arch of mem_ctrl is
type mc_state_type iS
(idle, readl, read2, read3, readd4, write);
signal state_reg, state_next: mc_state_type;
5 Signal oe_next ,we_next ,oe_buf_reg,we_buf_reg: std_logic;
begin
—— state register
process(clk,reset)
begin
10 if (reset=’1’) then
state_reg <= idle;
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
15 end process;
—— output buffer

20

25

30

35

40

5

50

55

60

65

process(clk,reset)
begin
if (reset=’1’) th
oe_buf_reg <=
we_buf_reg <=
elsif (clk’event
oe_buf_reg <=
we_buf_reg <=
end if;
end process;

—— next—state logic

MOORE OUTPUT BUFFERING

en

70};

)0);

and clk=’1’) then
oe_next;

we_next;

process(state_reg ,mem,rw,burst)

begin
case state_reg isS
when idle =>
if mem=’1"
if ru="1
state
else
state
end if;
else
state_ne
end if;
when write =>
state_next
when read1l =>

then
> then
_next <= readl;

_next <= write;

xt <=

idle;

<= idle;

if (burst=’1’) then

state_n
else
state_n
end if;
when read2 =>
state_next
when read3 =>
state_next
when read4 =>
state_next
end case;
end process;
—— look—ahead output
process(state_next)
begin
we_next <=
oe_next <=
case state_next i
when idle =>
when write =>
we_next
when readi
oe_next
when read?2
oe_next

Al AT A
v v

’0 00 -

0 ; —
y0 00 -

0 ;. —

ext <= read2;

ext <= idle;

<= read3;
<= read4;

<= idle;

logic

default value
default value
s

347

348 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

) when read3 =>
oe_next <= ’17;
when read4 =>
oe_next <= ’17;
end case;
75 end process;
—— output
we <= we_buf_reg;
oe <= oe_buf_reg;
end look_ahead_buffer_arch;

Thelook-ahead buffer isavery effective schemefor buffering Moore output. It provides
aglitch-free output signal and reduces T, to T¢,. Furthermore, this scheme has no effect
on the next-state logic or state assignment and needs only minimal modification over the
original code.

10.8 FSM DESIGN EXAMPLES

Our focus on the FSM is to use it as the control circuit in large systems. Such systems
involve a data path that is composed of regular sequential circuits, and are discussed in
Chapters 11 and 12. This section shows several smple stand-alone FSM applications.

10.8.1 Edge detection circuit

The VHDL code for the Moore machine—based edge detection design of Section 10.4.1is
shown in Listing 10.7. The code is based on the state diagram of Figure 10.12(a) and is
done in multi-segment style.

Listing 10.7 Edge detector with regular Moore output

library ieee;
use ieee.std_logic_1164. all
entity edge_detectorl is
port(
5 clk, reset: in std_logic;
strobe: in std_logic;
pl: out std_logic
);
end edge_detectorl;
10
architecture moore_arch of edge_detectorl is
type state_type is (zero, edge, omne);
signal state_reg, state_next: state_type;

begin
15 —— state register
process(clk,reset)
begin

if (reset=’1’) then
state_reg <= zero;
20 elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;

FSM DESIGN EXAMPLES 349

Table10.3 State assignment for edge detector output buffering

State state_reg(l) state_reg(0)

(p1)
Zero 0 0
edge 1
one 0 1
end process;
—— next—state logic
2 process(state_reg,strobe)

begin
case state_reg IS
when zero=>
if strobe= ’1’ then

30 state_next <= edge;
else
state_next <= zero;
end if;
when edge =>
£ if strobe= ’1’ then
state_next <= one;
else
state_next <= zero;
end if;
w when one =>

if strobe= ’1’ then
state_next <= one;
else
state_next <= zero;
45 end if;
end case;
end process;
—— Moore output logic
pl <= ’1’ when state_reg=edge else
50 07,

end moore_arch;

Assume that we want the output signal to be glitch-free. We can do it by using the
clever state assignment or look-ahead output buffer scheme. One possible state assignment
isshown in Table 10.3, and the VHDL codeis shown in Listing 10.8.

Listing 10.8 Edge detector with clever state assignment

architecture clever_assign_buf_arch of edge_detectorl is

constant zero: std_logic_vector (1 downto 0):= "00";
constant edge: std_logic_vector (1 downto 0):= "10";
constant ome: std_logic_vector (1 downto 0) := "01";
5 signal state_reg,state_next: std_logic_vector (1 downto 0);
begin

—— state register
process(clk,reset)

350 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

begin
10 if (reset=’1’) then
state_reg <= zero;
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
15 end process;
—— next—state logic
process(state_reg,strobe)

begin
case state_reg iS
20 when zero=>
if strobe= ’1’ then
state_next <= edge;
else
state_next <= zero;
2 end if;
when edge =>
if strobe= ’1’ then
state_next <= one;
else
30 state_next <= zero;
end if;
when others =>
if strobe= ’1’ then
state_next <= one;
3 else
state_next <= zero;
end if;
end case;
end process;
0 —— Moore output logic

pl <= state_reg(1);
end clever_assign_buf_arch;

The VHDL code for the look-ahead output circuit schemeisgivenin Listing 10.9.

Listing 10.9 Edge detector with alook-ahead output buffer

architecture look_ahead_arch of edge_detectorl is
type state_type iS (zero, edge, one);
signal state_reg, state_next: state_type;
signal pl_reg, pl_next: std_logic;
s begin
—— state register
process(clk,reset)
begin
if (reset=’1’) then
10 state_reg <= zero;
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
end process;
15 —— output buffer

20

25

30

35

5

50

FSM DESIGN EXAMPLES

process(clk,reset)
begin
if (reset=’1’) then
pl_reg <= ’0’;
elsif (clk’event and clk=’1’) then
pl_reg <= pl_next;
end if;
end process;
—— next—state logic
process(state_reg,strobe)
begin
case state_reg IS
when zero=>
if strobe= ’1’ then
state_next <= edge;
else
state_next <= zero;
end if;
when edge =>
if strobe= ’1’ then
state_next <= one;
else
state_next <= zero;
end if;
when one =>
if strobe= ’1’ then
state_next <= one;
else
state_next <= zero;
end if;
end case;
end process;
—— look—ahead output logic
pl_next <= ’1’ when state_next=edge else
)O);
—— output
pl <= pl_reg;

end look_ahead_arch;

351

Note that in this particular example the clever statement assignment scheme can be

implemented by using 2 bits (i.e., two D FFs) but the look-ahead output circuit scheme

needs at least three D FFs (2 bits for the state register and 1 bit for the output buffer).
TheVHDL codefor the Mealy output—based designisshown in Listing 10.10. The code

is based on the state diagram of Figure 10.12(b).

Listing 10.10 Edge detector with Mealy output

library ieee;
use ieee.std_logic_1164.all;
entity edge_detector2 is

port(
clk, reset: in std_logic;
strobe: in std_logic;
p2: out std_logic

352 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

);
end edge_detector?2;
10
architecture mealy_arch of edge_detector2 is
type state_type IS (zero, ome);
signal state_reg, state_next: state_type;

begin
15 —— state register
process(clk,reset)
begin
if (reset=’1’) then
state_reg <= zero;
20 elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;

end process;
—— next—state logic
b process(state_reg,strobe)
begin
case state_reg iS
when zero=>
if strobe= 21’ then

30 state_next <= one;
else
state_next <= 2zero;
end if;
when one =>
3 if strobe= ’1’ then
state_next <= one;
else
state_next <= zero;
end if;
2 end case;

end process;
—— Mealy output logic
p2 <= ’1’ when (state_reg=zero) and (strobe=’1’) else
)07;
s end mealy_arch;

An alternative to deriving an edge detector is to treat it as a regular sequentia circuit
and design it in an ad hoc manner. One possible implementation is shown in Figure 10.19.
The D FF in this circuit delays the strobe signal for one clock cycle and its output is
the “previous valug” of the strobe signal. The output of the and cell is asserted when
the previous value of the strobe signd is’0" and the current value of the strobe signal
is’'1’, which implies a positive transition edge of the strobe signal. The output signal is
like a Mealy output since its value depends on the register’s state and input signal. The
VHDL code is shown in Listing 10.11. The entity declaration is identical to the Mealy
machine-based edge detector in Listing 10.10.

Listing 10.11 Edge detector using direct implementation

architecture direct_arch of edge_detector2 is
signal delay_reg: std_logic;
begin

FSM DESIGN EXAMPLES 353

,_{>?_,—D7 p2
strobe d q

ok > delay_reg

Figure10.19 Direct implementation of an edge detector.

—— delay register
5 process(clk,reset)
begin
if (reset=’1’) then
delay_reg <= ’07;
elsif (clk’event and clk=’1’) then
10 delay_reg <= strobe;
end if;
end process;
— decoding logic
p2 <= (not delay_reg) and strobe;
s end direct_arch;

Although the code is compact for this particular case, this ad hoc approach can only be
applied to simple designs. For example, if the requirement specifies a glitch-free Moore
output, it is very difficult to derive the circuit thisway. Actually, we can easily verify that
this ad hoc design is actually Mealy machine-based design with binary state assignment
(i.e.,, 0to the zero state and 1 to the one state).

10.8.2 Arbiter

In alarge system, some resources are shared by many subsystems. For example, several
processors may share the same block of memory, and many peripheral devices may be
connected to the same bus. An arbiter isacircuit that resolves any conflict and coordinates
the access to the shared resource. This example considers an arbiter with two subsystems,
asshownin Figure 10.20. The subsystems communicate with the arbiter by apair of request
and grant signals, which are labeled asr (1) and g(1) for subsystem 1, and asr (0) and
g (0) for subsystem 0. When asubsystem needstheresources, it activatestherequest signal.
The arbiter monitors use of the resources and the requests, and grants accessto a subsystem
by activating the corresponding grant signal. Onceitsgrant signal isactivated, a subsystem
has permission to access the resources. After the task has been completed, the subsystem
releasesthe resources and deactivatesthe request signal. Sincean arbiter’sdecision isbased
partially on the eventsthat occurred earlier (i.e., previous request and grant status), it needs
internal states to record what happened in the past. An FSM can meet this requirement.
One critical issue in designing an arbiter is the handling of simultaneous requests. Our
first design gives priority to subsystem 1. The state diagram of the FSM is shown in
Figure 10.21(a). It consists of three states, waitr, grant1 and grant0. Thewaitr State
indicatesthat the resourcesis available and the arbiter iswaiting for arequest. Thegrant1
and grant0 states indicate that the resource is granted to subsystem 1 and subsystem O
respectively. Initialy, the arbiter is in the waitr state. If the r (1) input (the request
from subsystem 1) is activated at the rising edge of the clock, it grants the resources to
subsystem 1 by moving to the grant1 state. The g(1) signal is asserted in this state to

354 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

g1 subsystem 1
arbiter _r y
ok —> shared
q0 10 resources
subsystem 0 J

Figure10.20 Block diagram of an arbiter.

-

(2) (b)

Figure10.21 State diagrams of afixed-priority two-request arbiter.

inform subsystem 1 of the availability of the resources. After subsystem 1 completes its
usage, it signals the release of the resources by deactivating the r (1) signal. The arbiter
returnsto the waitr state accordingly.

Inthewaitr state, if r(1) isnot activated and r (0) is activated at the rising edge, the
arbiter grants the resources to subsystem 0 by moving to the grant0 state and activates the
g(0) signa. Subsystem 0 can then have the resources until it releases them. The VHDL
code for thisdesign is shown in Listing 10.12.

Listing 10.12 Arbiter with fixed priority

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity arbiter2 is

FSM DESIGN EXAMPLES

5 port(
clk: in std_logic;
reset: in std_logic;
r: in std_logic_vector (1 downto 0);
g: out std_logic_vector (1 downto 0)
10)
end arbiter?2;

architecture fixed_prio_arch of arbiter2 is
type mc_state_type IS (waitr, grantl, grantO);
15 signal state_reg, state_next: mc_state_type;
begin
—— state register
process(clk,reset)
begin
20 if (reset=’1’) then
state_reg <= waitr;
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
2 end process;
—— next—state and output logic
process(state_reg,r)

begin
g <= "00"; —— default values
30 case state_reg IS
when waitr =>
if r(1)=>1’ then
state_next <= grantl;
elsif r(0)=’1’ then
35 state_next <= grantO;
else
state_next <= waitr;
end if;
when grantl =>
W if (r(1)=>1’) then
state_next <= grantl;
else
state_next <= waitr;
end if;
5 g(l) <= 217,
when grant0 =>
if (r(0)=>1’) then
state_next <= grantO;
else
50 state_next <= waitr;
end if;
g(0) <= "17;
end case;

end process;
ssend fixed_prio_arch;

355

356 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

If the subsystems are synchronized by the same clock, we can make g(1) and g(0)
be Mealy output. The revised state diagram is shown in Figure 10.21(b). This alows the
subsystems to obtain the resources one clock cycle earlier. In VHDL code, we modify the
code under the waitr segment of the case statement to reflect the change. The revised
portion becomes

when waitr =>
if r(1)=>1’ then
state_next <= grantl;
g(1) <= ’1’; — newly added line
elsif r(0)=’1’ then
state_next <= grantO;

g(0) <= ’1’; — newly added line
else

state_next <= waitr;
end if;

The resource alocation of the previous design gives priority to subsystem 1. The pref-
erential treatment may cause aproblem if subsystem 1 requests the resources continuously.
We can revise the state diagram to enforce afairer arbitration policy. The new policy keeps
track of which subsystem had the resources last time and gives preference to the other
subsystem if the two reguest signals are activated simultaneously. The new design has to
distinguish two kinds of wait conditions. The first condition is that the resources were
last used by subsystem 1 so preference should be given to subsystem 0. The other condi-
tion is the reverse of the first. To accommodate the two conditions, we split the original
waitr state into the waitrl and waitr0 states, in which subsystem 1 and subsystem 0
will be given preferential treatment respectively. The revised state diagram is shown in
Figure 10.22. Note that FSM moves from the grant0 state to the waitr1 state after sub-
system 0O deactivates the request signal, and moves from the grant1 state to the waitr0
state after subsystem 1 deactivates the request signal. Therevised VHDL codeisshownin
Listing 10.13.

Listing 10.13 Arbiter with aternating priority

architecture rotated_prio_arch oOf arbiter2 is
type mc_state_type iS (waitrl, waitrO, grantl, grantO);
signal state_reg, state_next: mc_state_type;

begin
5 —— state register
process(clk,reset)
begin
if (reset=’1’) then
state_reg <= waitrl;
10 elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;

end process;
—— next—state and output logic
15 process(state_reg,r)
begin
g <= "00"; — default values
case state_reg iS
when waitri =>
20 if r(1)=’1’ then

25

30

35

40

45

50

FSM DESIGN EXAMPLES

' 10’ M0

r1'er0 r1er0'

g0<=1

Figure10.22 State diagram of afair two-request arbiter.

state_next <= grantl;
elsif r(0)=’1’ then
state_next <= grantO;
else
state_next <= waitril;
end if;
when waitr0 =>
if r(0)=>1’ then
state_next <= grantO;
elsif r(1)=’1" then
state_next <= grantl;
else
state_next <= waitrO;
end if;
when grantil =>
if (r(1)="1’) then
state_next <= grantl;

else

state_next <= waitrO;
end if;
g(1) <= 17,

when grant0 =>
if (r(0)="1’) then
state_next <= grantO;

else
state_next <= waitrl;
end if;
g(0) <= 217,
end case;

end process;

357

358 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

13" er2'er1 e r0'

® O ©

r2er1 er0'+r3

Figure 10.23 Partial state diagram of afour-request arbiter.

end rotated_prio_arch;

We can apply the same idea and expand the arbiter to handle more than two requests.
Thepartial statediagram of an arbiter with four requestsisshownin Figure 10.23. It assigns
priority in round-robin fashion (i.e., subsystem 3, subsystem 2, subsystem 1, subsystem O,
then wrapping around), and the subsystem that obtains the resources will be assigned to the
lowest priority next.

10.8.3 DRAM strobe generation circuit

Because of the large number of memory cells, the address signals of a dynamic RAM
(DRAM) device are split into two parts, known as row and column. They are sent to the
DRAM'’s address line in a time-multiplexed manner. Two control signals, ras_n (row
address strobe) and cas_n (column address strobe), are strobe signals used to store the
address into the DRAM’s interna latches. The post-fix “_n” indicates active-low output,
the convention used in most memory chips. The simplified timing diagram of a DRAM
read cycleis shown in Figure 10.24(a). It is characterized by the following parameters:
e T,.,s: ras accesstime, thetimerequired to obtain output data after ras n isasserted
(i.e., ras_n goesto’0’).
e T..s: cas accesstime, thetimerequired to obtain output data after cas_n isasserted
(i.e., cas_ngoesto’0’).
e T, prechargetime, thetimeto rechargethe DRAM cell to restore the original value
(since the cell’s content is destroyed by the read operation).
e T,..: read cycle, the minimum elapsed time between two read operations.

The operation of aconventional DRAM device is asynchronous and the device does not
have a clock signal. The strobe signals have to be asserted in proper sequence and last
long enough to provide the necessary time for decoding, multiplexing and memory cell
recharging.

A memory controller istheinterface between aDRAM device and asynchronous system.
One function of the memory controller is to generate proper strobe signals. This example
shows how to use an FSM to accomplish thistask. A real memory controller should also

FSM DESIGN EXAMPLES

address :X row addr X X col addr X

ras_n
PTcasg’

cas_n

' A\

" Tras T Tpr—"
‘r |
a) Simplified timing of a DRAM read cycle

(

state idle r ¢ p

ras_n H
cas_n

(b) State of the strobe signals

(c) State diagram of slow strobe generation

Figure10.24 Read strobe generation FSM.

359

360 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

contain register and buffer to store address and dataand should have extra control signalsto
coordinate the address bus and data bus operation. A complete memory controller example
isdiscussed in Section 12.3.

Suppose that a DRAM has a read cycle of 120 ns, and T, Teqs and 1), are 85,
20 and 35 ns respectively. We want to design an FSM that generates the strobe signals,
ras_n and cas_n, after the input command signal mem is asserted. The timing diagram of
Figure 10.24(a) showsthat the ras_n and cas_n signals have to be asserted and deasserted
following a specific sequence:

e Theras n signal isasserted first for at least 65 ns. The output pattern of the FSM is
"01" inthisinterval.

e The cas_n signal is then asserted first for at least 20 ns. The output pattern of the
FSM is"00" in thisinterval.

e Theras nand cas_nsignasarede-assertedfirst for at least 35 ns. Theoutput pattern
of theFSM is"11" in thisinterval.

Our first design uses a state for a pattern in the sequence and divides aread cycle into
three states, namely the r, ¢ and p states, as shown in Figure 10.24(b). The statediagramis
shown in Figure 10.24(c). An extra idle state is added to accommodate the no-operation
condition. We useaMoore machinesinceit hasbetter control over thewidth of theintervals
and can be modified to generate glitch-free output. In thisdesign, each pattern lastsfor one
clock cycle. To satisfy the timing requirement for the three intervals, the clock period has
to be at least 65 ns, and it takes 195 ns (i.e., 3«65 ns) to complete a read operation. The
VHDL codeisshownin Listing 10.14.

Listing 10.14 Slow DRAM read strobe generation FSM with regular output

library ieee;
use ieee.std_logic_1164. all
entity dram_strobe is
port(
5 clk, reset: in std_logic;
mem: in std_logic;
cas_n, ras_n: Out std_logic

)
end dram_strobe;
10
architecture fsm_slow_clk_arch oOf dram_strobe is
type fsm_state_type is (idle, r, c, p);
signal state_reg, state_next: fsm_state_type;
begin

15 — state register
process(clk,reset)
begin

if (reset=’1’) then
state_reg <= idle;
2 elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
end process;
—— next—state logic
2 process(state_reg ,mem)
begin
case state_reg iS

FSM DESIGN EXAMPLES 361

when idle =>
if mem=’1’ then

30 state_next <= r;
else
state_next <= idle;
end if;
when r =>
35 state_next <=c;

when ¢ =>
state_next <=p;
when p =>
state_next <=idle;
4 end case;
end process;
—— output logic
process(state_reg)

begin
45 ras_n <= ’17;
cas_n <= ’17’;

case state_reg iS
when idle =>
when r =>

50 ras_n <= ’0’;
when ¢ =>
ras_n <= ’0’;
cas_n <= ’0’;
when p =>
55 end case;

end process;
end fsm_slow_clk_arch;

Since the strobe signals are level-sensitive, we have to ensure that these signals are
glitch-free. We can revise the previous code to add the look-ahead output buffer, as shown
in Listing 10.15.

Listing 10.15 Slow DRAM read strobe generation FSM with alook-ahead output buffer

architecture fsm_slow_clk_buf_arch of dram_strobe is
type fsm_state_type iS (idle,r,c,p);
signal state_reg, state_next: fsm_state_type;
signal ras_n_reg, cas_n_reg: std_logic;

5 signal ras_n_next, cas_n_next: std_logic;

begin
—— state register and output buffer
process(clk,reset)

begin
10 if (reset=’1’) then
state_reg <= idle;
ras_n_reg <= ’17;
cas_n_reg <= ’17;
elsif (clk’event and clk=’1’) then
15 state_reg <= state_next;

ras_n_reg <= ras_n_next;
cas_n_reg <= cas_n_next;

362 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

end if;
end process;

20 —— next—state
process(state_reg ,mem)
begin

case state_reg iS
when idle =>

% if mem=’1’ then
state_next <= r;
else
state_next <= idle;
end if;
20 when r =>

state_next <=c;
when ¢ =>
state_next <=p;
when p =>
35 state_next <=idle;
end case;
end process;
—— look—ahead output logic
process(state_next)

7 begin
ras_n_next <= ’17;
cas_n_next <= ’17;

case state_next S
when idle =>
45 when r =>
ras_n_next <= ’0’;
when ¢ =>
ras_n_next <= ’0’;
cas_n_next <= ’0’;
50 when p =>
end case;
end process;
—output
ras_n <= ras_n_reg;
55 cas_n <= cas_n_reg;
end fsm_slow_clk_buf_arch;

To improve the performance of the memory operation, we can use asmaller clock period
to accommodate the differences between the three intervals. For example, we can use a
clock with aperiod of 20 nsand use multiple statesfor each output pattern. Thethree output
patterns need 4 (i.e,, [$2]) states, 1 (i.e, [20]) state and 2 (i.e, [32]) states respectively.
Therevised state diagram isshown in Figure 10.25, in which the original r stateissplitinto
rl, r2, r3 and r4 states, and the original p stateis split into p1 and p2 states. It now takes
seven states, which amountsto 140 ns (i.e., 7«20 ns), to complete aread operation. We can
further improve the performance by using a 5-ns clock signal (assuming that the next-state
logic and register are fast enough to support it). The three output patterns need 13, 4 and
7 statesrespectively, and aread operation can be done in 120 ns, the fastest operation speed
of this DRAM chip. While still simple, the state diagram becomes tedious to draw. RT
methodol ogy (to be discussed in Chapters 11 and 12) can combine counters with FSM and

FSM DESIGN EXAMPLES 363

Figure10.26 Sample waveform of Manchester encoding.

provide abetter alternativeto implement thistypeof circuit. Inamorerealistic scenario, the
strobe generation circuit should be part of alarge system, and it cannot use an independent
clock. The design has to accommodate the clock rate of the main system and adjust the
number of statesin each pattern accordingly.

10.8.4 Manchester encoding circuit

Manchester code is a coding scheme used to represent a bit in a data stream. A 'O’ value
of abit isrepresented as a 0-to-1 transition, in which the lead half is’ 0" and the remaining
halfis’1l. Similarly, a’1’ value of a bit is represented as a 1-to-0 transition, in which the
lead half is’1" and the remaining half is’0’. A sample data stream in Manchester code is
shown in Figure 10.26. The Manchester codeis frequently used in a serial communication
line. Since there isatransition in each bit, the receiving system can use the transitions to
recover the clock information.

The Manchester encoder transforms aregular data stream into a Manchester-coded data
stream. Because an encoded bit includes a sequence of "01" or "10", two clock cycles are
needed. Thus, the maximal data rate is only half of the clock rate. There are two input
signals. The 4 signd is the input data stream, and the v signal indicates whether the 4

364 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

Figure10.27 State diagram of a Manchester encoder.

signal isvalid (i.e., whether there is data to transmit). The d signal should be converted to
Manchester code if the v signal is asserted. The output remains’'0’ otherwise. The state
diagramisshownin Figure 10.27. While v isasserted, the FSM startsthe encoding process.
If 4is’0, it travels through the s0a and sO0b states. If d is’1’, the FSM travels through
the s1a and s1b states. Once the FSM reachesthe s1b or sOb state, it checksthe v signal.
If the v signal is till asserted, the FSM skips the id1le state and continuously encodes the
next input data. The Moore output is used because we have to generate two equal intervals
for each bit. The VHDL codeis shown in Listing 10.16.

Listing 10.16 Manchester encoder with regular output

library ieee;
use ieee.std_logic_1164.all;
entity manchester_encoder isS
port(
5 clk, reset: in std_logic;
v,d: in std_logic;
y: out std_logic
);
end manchester_encoder;
10
architecture moore_arch oOf manchester_encoder is
type state_type is (idle, sOa, sOb, sla, sib);
signal state_reg, state_next: state_type;

begin
15 —— state register
process(clk,reset)
begin

if (reset=’1’) then
state_reg <= idle;

25

30

35

40

45

50

55

60

65

FSM DESIGN EXAMPLES

elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
end process;
—— next—state logic
process(state_reg,v,d)
begin
case state_reg iS
when idle=>
if v= °0’ then
state_next <= idle;
else
if d= 0’ then
state_next <= sOa;
else
state_next <= sla;
end if;
end if;
when s0a =>
state_next <= sOb;
when sla =>
state_next <= slb;
when s0b =>
if v= °0’ then
state_next <= idle;
else
if d= 0’ then
state_next <= sOa;
else
state_next <= sla;
end if;
end if;
when sib =>
if v= °0’ then
state_next <= idle;
else
if d= 0’ then
state_next <= s0a;
else
state_next <= sla;
end if;
end if;
end case;
end process;
—— Moore output logic
y <= ’1’ when state_reg=sla Or state_reg=s0b else
;0);
end moore_arch;

365

Because the transition edge of the Manchester code is frequently used by the receiver

to recover the clock signal, we should make the output data stream glitch-free. This can
be achieved by using the look-ahead output buffer. The revised VHDL code is shown in
Listing 10.17.

366 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

Listing 10.17 Manchester encoder with alook-ahead output buffer

architecture out_buf_arch of manchester_encoder is
type state_type is (idle, sOa, sOb, sla, silb);
signal state_reg, state_next: state_type;
signal y_next, y_buf_reg: std_logic;
s begin
—— state register and output buffer
process(clk,reset)
begin
if (reset=’1’) then
10 state_reg <= idle;
y_buf_reg <= ’07;
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
y_buf_reg <= y_next;
15 end if;
end process;
—— next—state logic
process(state_reg,v,d)
begin
20 case state_reg iS
when idle=>
if v="0’ then
state_next <= idle;
else
25 if d= 0’ then
state_next <= sOa;
else
state_next <= sla;
end if;
0 end if;
when s0a =>
state_next <= sOb;
when sla =>
state_next <= slb;
3 when s0b =>
if v="0’ then
state_next <= idle;

else
if d=’0’ then
40 state_next <= sOa;
else
state_next <= sla;
end if;
end if;
3 when sib =>

if v= 0’ then
state_next <= idle;

else
if d= 0’ then
50 state_next <= s0a;
else

state_next <= sla;

FSM DESIGN EXAMPLES 367

Figure10.28 State diagram of afree-running mod-16 counter.

end if;
end if;
55 end case;
end process;
—— look—ahead output logic
y_next <= ’1’ when state_next=sla Or state_next=s0b else
’O’;
60 — output
y <= y_buf_reg;
end out_buf_arch;

10.8.5 FSM-based binary counter

As discussed in Section 8.2.3, our classification of regular sequential circuits and FSMs
(random sequential circuits) is for “design practicality.” In theory, al sequential circuits
with finite memory can be modeled by FSMs and derived accordingly. This example
demonstrates the derivation of an FSM-based binary counter. Let usfirst consider afree-
running 4-bit counter, similar to the onein Section 8.5.4. A 4-bit counter hasto traverse 16
(21) digtinctive states, and thus the FSM should have 16 states. The state diagram is shown
in Figure 10.28. Note the regular pattern of transitions.

The FSM can be modified to add more features to this counter and gradually transform
it to the featured binary counter of Section 8.5.4. To avoid clutter in the diagram, we use a
single generic si state (the ith state of the counter) to illustrate the required modifications.
The processis shown in Figure 10.29. We first add the synchronous clear signal, syn_c1r,
which clears the counter to 0, asin Figure 10.29(b). In the FSM, it corresponds to forcing
the FSM to return to the initial state, s0. Note that the logic expressions give priority to
the synchronous clear operation. The next step isto add the load operation. This actualy
involves five input bits, which include the 1-bit control signal, 1oad, and the 4-bit data
signal, d. The d signal isthe value to be loaded into the counter and it is composed of four
individual bits, 43, d2, d1 and d0. The load operation changes the content of the register
according to thevalue of d. Intermsof FSM operation, 16 transitions are needed to express
the possible 16 next states. The revised diagram is shown in Figure 10.29(c). Finaly, we
can add the enable signal, en, which can suspend the counting. In terms of FSM operation,
it corresponds to staying in the same state. The final diagram is shown in Figure 10.29(d).
Note that the logic expressions of the transition arches set the priority of the control signals
in the order syn_clr, load and en. Although this design process is theoretically doable,
it is very tedious. The diagram will become extremely involved for alarger, say, a 16- or
32-hit, counter. Thisexample showsthe distinction between aregular sequential circuit and
arandom sequential circuit. In Section 12.2, we present amore comprehensive comparison

368 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

Q

v

to state (i+1)

(a)

\4

i
syn_clr m syn_clr'
o state 0 A \S'J yn {0 state (i+1)

(b)

syn_clr si syn_clr' « load'

to state 0 » to state (i+1)

syn_clr' « load ¢
d4+d3+d2-d1

syn_clr' « load ¢
d4'+ d3'+d2' - d1'

to state 0 to state 15

(©

syn_clr' « load' * en'

syn_clr si syn_clr' + load' * en

tostate 0 « » to state (i+1)

syn_clr' « load ¢
d4+d3+d2-d1

syn_clr' « load ¢
d4'+d3' + d2'« d1'

to state 0 to state 15

(d

Figure10.29 State diagram development of afeatured mod-16 counter.

BIBLIOGRAPHIC NOTES 369

between regular sequentia circuits, random sequential circuits and combined sequential
circuits, which consist of both regular and random sequential circuits.

10.9 BIBLIOGRAPHIC NOTES

FSM is a standard topic in an introductory digital systems course. Typical digital systems
texts, such as Digital Design Principles and Practices by J. F. Wakerly and Contemporary
Logic Design by R. H. Katz, provide comprehensive coverage of the derivation of state
diagrams and ASM charts as well as a procedure to realize them manually in hardware.
They aso show the techniques for state reduction. On the other hand, obtaining optimal
state assignment for an FSM is a much more difficult problem. For example, it takes two
theoretical texts, Synthesis of Finite Sate Machines: Logic Optimization by T. Villaet al.
and Synthesis of Finite Sate Machines. Functional Optimization by T. Kam, to discussthe
optimization agorithms.

Problems

10.1 For the “burst” read operation, the memory controller FSM of Section 10.2.1 im-
plicitly specifies that the main system has to activate the rw and mem signalsin the first
clock cycle and then activate the burst signa in the next clock cycle. We wish to simplify
the timing requirement for the main system so that it only needs to issue the command in
the first clock cycle (i.e., activates the burst signal at the same time as the rw and mem
signals).

(a) Revisethe state diagram to achieve this goal.

(b) Convert the state diagram to an ASM chart.

(c) Derive VHDL code according to the ASM chart.

10.2 Thememory controller FSM of Section 10.2.1 hastoreturntothe idle statefor each
memory operation. To achieve better performance, revise the design so that the controller
can support “back-to-back” operations; i.e., the FSM can initiate a new memory operation
after completing the current operation without first returning to the idle state.

(a) Derivethe revised state diagram.

(b) Convert the state diagram to an ASM chart.

(c) Derive VHDL code according to the ASM chart.

10.3 Revise the edge detection circuit of Section 10.4.1 to detect both 0-to-1 and 1-to-0
transitions; i.e., the circuit will generate a short pulse whenever the strobe signal changes
state. Use a Moore machine with aminimal number of statesto realize this circuit.

(a) Derivethe state diagram.

(b) Convert the state diagram to an ASM chart.

(c) Derive VHDL code according to the ASM chart.

10.4 Repeat Problem 10.3, but use a Mealy machine to realize the circuit. The Mealy
machine needs only two states.

10.5 Indigital communication, a special synchronization pattern, known as a preamble,
is used to indicate the beginning of a packet. For example, the Ethernet Il preamble in-
cludes eight repeating octets of "10101010". We wish to design an FSM that generates
the "10101010" pattern. The circuit has an input signal, start, and an output, data_out.
When start is’1’, the"10101010" will be generated in the next eight clock cycles.

370 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

(a) Derivethe state diagram.

(b) Convert the state diagram to an ASM chart.

(c) Derive VHDL code according to the ASM chart.

(d) Useaclever stateassignment to obtain glitch-freeoutput signal. Derivetherevised
VHDL code.

(e) Use alook-ahead output buffer for the output signal. Derive the revised VHDL
code

10.6 Now we wish to design an FSM to detect the "10101010" pattern in the receiving
end. The circuit has an input signal, data_in, and an output signal, match. The match
signal will be asserted as’1’ for one clock period when the input pattern "10101010" is
detected.

(a) Derivethe state diagram.

(b) Convert the state diagram to an ASM chart.

(c) Derive VHDL code according to the ASM chart.

10.7 Can we apply look-ahead output buffer for Mealy output? Explain.

10.8 Thefirst arbiter of Section 10.8.2 hasto return to thewaitr state beforeit can grant
the resources to another request. Revise the design so that the arbiter can move from one
grant state to another grant state when there is an active request.

(a) Derivethe state diagram.

(b) Convert the state diagram to an ASM chart.

(c) Derive VHDL code according to the ASM chart.

10.9 Consider thefair arbiter of Section 10.8.2. Itsdesignisbased on the assumption that
asubsystem will release the resources voluntarily. An alternativeisto use atimeout signa
to prevent a subsystem from exhausting the resource. When the timeout signal is asserted,
the arbiter will return to await state regardless of whether the corresponding request signal
isstill active.

(a) Derivetherevised state diagram.

(b) Convert the state diagram to an ASM chart.

(c) Derive VHDL code according to the ASM chart.

10.10 Redesignthe DRAM strobe generation circuit of Section 10.8.3 for asystemwitha
different clock period. Derivethe state diagram and determinethe required timeto complete
aread cycle for the following clock periods:

(a) A clock period of 10 ns.

(b) A clock period of 40 ns.

(c) A clock period of 200 ns.

10.11 A Manchester decoder transformsaM anchester-coded datastream back to aregular
binary data stream. There are two output signals. The data signal is the recovered data
bit, whichcan be’0’ or '1’. The valid signa indicates whether a transition occurs. The
valid signa isused to distinguish whether the’ 0’ of the data signal is due to the O-to-1
transition or inactivity of the data stream.

(a) Derivethe state diagram.

(b) Convert the state diagram to an ASM chart.

(c) Derive VHDL code according to the ASM chart.

PROBLEMS 371

10.12 Non-return to-zero invert-to ones (NRZI) code is another code used in seria trans-
mission. The output of an NRZI encoder is’Q’ if the current input value is different from
the previousvalueand is’ 1’ otherwise. Design an NRZI encoder using an FSM and derive
the VHDL code accordingly.

10.13 Repeat Problem 10.12, but design an NRZI decoder, which convertsaNRZI-coded
stream back to aregular binary stream.

10.14 Derive the VHDL code for the FSM-based free-running mod-16 counter of Sec-
tion 10.8.5.
(a) Synthesize the code using an ASIC technology. Compare the area and perfor-
mance (in term of maximal clock rate) of the code in Section 10.8.5.
(b) Synthesize the code using an FPGA technology. Compare the area and perfor-
mance of the code in Section 10.8.5.

10.15 Repeat Problem 10.14 for the featured mod-16 counter of Section 10.8.5.

