
© Klaus.Schleisiek, 16-Apr-04, Rev. 1.51 1 of 23

MicroCore
a

scalable,
dual Stack,

Harvard Processor
for embedded Control

that fits into FPGAs easily

Klaus.Schleisiek AT hamburg.de

Using an FPGA based simple and extensible processor core as the foundation of a system eventually
frees the "core aided programmer" from the limitations of any static processor architecture, be it
CISC, RISC, WISC, FRISC or otherwise. No more programming around known hardware bugs. A
choice can be made as to whether a needed functionality should be implemented in hardware or
software; simply, the least complex, most energy efficient solution can be realised while working on
a specific application. Building on an FPGA, time critical and perhaps complex functions can be
realised in hardware in exactly the way needed by the application offloading the processor from sub-
optimal inner loops.

The FPGA approach also makes the user independent from product discontinuity problems that haunt
the hi-rel industry since the dawn of the silicon age. Finally: putting the core into FPGAs puts an end
to one of the high-level programming language paradigms, namely the aspect of (hoped-for)
portability. Once I can realise my own instruction set, I am no longer confronted with the need to
port the application to any different architecture and henceforth, the only reason to adhere to a
conventional programming style is the need to find maintenance programmers. Remains the need for
a vendor independent hardware description language to be portable w.r.t. any specific FPGA vendor
and family. To date, MicroCore has been realised in VHDL, using the MTI simulator and the
Synplify and Leonardo synthesisers targeting Xilinx and Altera FPGAs. For more and up-to-date
information, please refer to "www.microcore.org".

A novel feature of MicroCore are its two different inputs to react to external events:

Interrupt: An event did happen that was NOT expected by the software.

Exception: An event did NOT happen that was expected by the software.

MicroCore is not confined to executing Forth programs but it is rooted in the Forth virtual machine.
MicroCore has been designed to support Forth as its "Assembler". Support for local variables
(relative return-stack addressing) is cheap and seems to be all that is needed to soup up MicroCore
for C. Instructions for interpreting token threaded code have been included to support Java.

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 2 of 23

1 Design Philosophy.. 3
2 Block Diagram ... 4
3 Hardware Architecture... 5
4 Instruction Architecture ... 6

4.1 Lit/Op Bit.. 7
4.2 Type field.. 7
4.3 Stack field ... 8
4.4 Group field.. 8

5 Instruction Semantics.. 9
5.1 BRA instructions .. 9
5.2 ALU instructions .. 9
5.3 MEM instructions ... 9
5.4 USR instructions... 10
5.5 Complex Branches (BRA PUSH)... 10
5.6 Unary Math Instructions (ALU BOTH) ... 11
5.7 Complex Math (ALU NONE) .. 11
5.8 Instruction Mnemonics ... 12

6 Core Registers.. 14
6.1 STATUS ... 14
6.2 TOR .. 14
6.3 RSTACK .. 14
6.4 LOCAL... 14
6.5 RSP ... 14
6.6 DSP... 14
6.7 TASK.. 15
6.8 IP... 15

7 Memory Mapped Registers .. 15
7.1 FLAGS (read) / IE (write) (-1) ... 15
7.2 TASK register (-2).. 15

8 Booting.. 16
9 Interrupts ... 16

9.1 The Interrupt Mechanism ... 16
9.2 Handling Multiple Interrupt Sources .. 16

10 Exceptions .. 16
10.1 EXCEPTION Signal... 17

11 Data Memory Access... 17
11.1 Memory Map .. 18

12 The Instruction Cycle.. 19
13 MicroCore Scaling... 19

13.1 Semantic Switches .. 19
13.2 Vector Widths... 20

14 Software Development .. 21
14.1 Forth Cross-Compiler ... 21
14.2 C Cross-Compiler ... 22

15 Project Status ... 22
16 Licensing... 23
17 Acknowledgements .. 23
18 Bibliography... 23

18.1 Revision History ... 23
1

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 3 of 23

Design Philosophy
MicroCore's top priority is simplicity and understandability. MicroCore is rooted in the Forth
language but it is not confined to execute Forth programs – it is a pretty good general purpose
processor and indexed addressing into the return stack allows easy compilation of C programs that
execute efficiently.

Yet its design approach has been different from most other processor cores: Its assembler was first
and it realises about 25 Forth primitives. Whereas most other processors attempt to give you the
utmost in instruction diversity from a minimum of hardware, you will find some very specialised
instructions of high semantic content in MicroCore, because 30 years of Forth experience have
proven that these are useful primitives. Nevertheless, each instruction executes in one clock cycle.

MicroCore is not the only architecture that uses Forth as its assembler. I took Chuck Moores NC4000
as a model, enhanced it to become the FRP1600, which never made it beyond second silicon and its
vectored interrupt bug. A fresh approach was the realisation of the "Fieldbus Processor" IX1 that still
sells in industrial automation. It introduced the Harvard Architecture to Forth machines. MicroCore
utilises two inventions of the Transputer, namely: Concatenation of "nibbels" to form higher
precision literals followed by the instruction that consumes it, which is the enabling technology for
the scalable data path width without change to the object code. Secondly the EXCEPTION signal as
a hardware mechanism to deal with resource scheduling, which is the enabling technology for
efficient and easy to use multi-tasking.

MicroCore attempts to be an optimum in terms of hardware complexity versus instruction semantics.
There are other architectures that are simpler at the expense of instruction semantics. But then you
have to execute more of those simpler instructions to get a certain job done, which leads to higher
power consumption because, after all, fetching instructions from program memory tends to be the
major source of power consumption in microprocessor systems.

Due to Forth's extensibility - i.e. the openness of its unconventional compiler for user modifications
and extensions - the Forth standardisation process is a slow consensus building process in a large
community compared to the compiler writer specialists' circles of most other languages. Forth words
could be thought of as the micro cells of a software system that has been realised in order to solve a
specific problem. In much the same way as application specific instructions can be added to
MicroCore in VHDL to realise a more specific and complex piece of hardware. Simplicity is an
indication of proper factoring and understandability is the condition for wide acceptance. Proper
factoring is a matter of experience and a crave for aesthetic solutions. E.g. the "proper" building
blocks for a UART may be uart_clk, uart_tx, and uart_rx. Only time and experience can tell.

In releasing MicroCore to the public, I hope that it will become a catalyst to spawn additional
peripheral functions, or MicroCells, placed under the same license conditions. As the Original
Developer of MicroCore I reserve the right to certify conformance of Derived Work with the
Original Code. This is my only business interest in MicroCore besides using it myself in embedded
systems development. In that respect, the MicroCore licensing terms are similar to the freeBSD terms
and much more liberal than the ubiquitous GPL.

As long as I can not support MicroCore as a product I will not be offering a "Public" MicroCore
license. Instead, the "MicroCore Exploratory License" will allow individuals, universities, and
research institutes to gain experience with it. I will grant a "MicroCore Unilateral License" to any
company once the support situation has been clarified.

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 4 of 23

2 Block Diagram

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 5 of 23

3 Hardware Architecture
MicroCore is a dual-stack, Harvard architecture with three memory areas that can be accessed in
parallel: Data-stack (RAM), Data-memory and return-stack (RAM), and Program-memory (ROM).

The architecture diagram shows all busses that are needed. Each entity generates its own control
signals from the current instruction INST and the STATUS register.

All instructions without exception are 8-bits wide, and they are stored in the program-memory ROM.
Due to the way literal values can be concatenated from sequences of literal instructions, all data-
paths and memories are scalable to any word width without any change in the object code as long as
the magnitude of the numbers processed are representable. In essence, on a given object code the
processor performs arithmetic modulo the synthesised data path width.

The data paths are made up of the data-stack Dstack, the ALU and of the data-memory and return-
stack Rstack as well as of uBus, the register TOS (Top-Of-Stack), that are in between the data-stack
and the ALU. Using constants in the VHDL code that work as compiler switches, the minimal
MicroCore can be extended: Adding NOS (Next-Of-Stack) will allow a single cycle SWAP
instruction, adding TOR (Top-Of-Return-Stack) as well will enable a single cycle, nestable
decrement and branch instruction NEXT as well as complex math step instructions for multiply,
divide, etc. Adding the TASK register will support a multi-tasking OS with a base-index addressing
mode into a task control block. Adding indexed addressing into the return-stack will give single cycle
access to local variables. Adding the IP (Instruction-Pointer) register will allow efficient interpre-
tation of tag and token threaded code that is stored in the data memory.

The data-stack is realised by a dual-port RAM used as Stack under control of the Data-Stack-Pointer
DSP, and the topmost stack item is held in the TOS register. Typically the size of the Stack Memory
needed will be small enough to fit inside the FPGA. If NOS is instantiated as well, the data stack
only needs single-port RAM.

IO is data-memory mapped and the most significant address bit selects the external world when set.
In addition, program memory may be mapped into the lower part of the IO address space for van
Neumann style read and write access. If the most significant address bit is not set data-memory and
return-stack RAM is selected. The return-stack occupies the upper end of Data Memory under
control of Return-Stack-Pointer RSP. Both Data and Program Memory may use internal FPGA
block-RAM as "caches" and therefore, small controller applications may run in an FPGA without any
external memory needs.

A number of Data Memory access instructions are available:

• Pre-incrementing absolute addressing off of an address in the TOS register with a three bit signed
pre-increment in the instruction,

• Indexed addressing relative to the Return Stack Pointer for stack frame access,

• Indexed addressing relative to the TASK register.

After each memory access, the absolute memory address that had been accessed will remain in TOS.
Data transfer takes place between the second data stack element and memory/IO.

The Sequencer generates the Program Memory address for the next instruction, which can have a
number of sources:

• The Program Counter PC for a sequential instruction,

• the ALU for a relative branch or call,

• the TOS register for an absolute branch or call,

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 6 of 23

• the Return Stack (Data Memory) for a return instruction,

• the INSTruction register for an immediate call (soft instruction),

• the fixed Interrupt Service Routine address ISR as part of an interrupt acknowledge cycle, or

• the fixed Exception Service Routine address ESR for the EXCEPTION signal or the PAUSE
instruction,

• the fixed Overflow Service Routine address OSR for a conditional overflow service routine.

The STATUS register has been shown as a separate entity. In the code however, it is composed of
status bits generated from several sources and therefore, it is spread across the entire design as record
stBus.

The Interrupt Processing unit takes care of synchronising and masking a scalable number of static
external interrupt sources.

Both, instruction decoding and status register bit processing has been decentralised because it makes
the code easier to understand, maintain, modify, and extend.

4 Instruction Architecture
An instruction is always 8 bits wide. Scalability is achieved on the object code level because all
literal values are composed of literal instructions that can be concatenated. Refer to [3 instruction
structures] for a discussion of the literal representation used, which is characterised by its "prefix"
nature called "Vertical instruction set with literal prefixes" in the paper. To my knowledge, this type
of code has been invented by David May for the Transputer.

It has two advantages and one drawback compared to other instruction set structures:

Each instruction is "self contained" and therefore, this type of code can be interrupted between
any two instructions, simplifying interrupt hardware and minimising interrupt latency to the max.

Long literals can be composed of a sequence of literal instructions that are concatenated in the
TOS register. Therefore, this type of instruction architecture is independent of the data-word
width.

Prefix code has the highest instruction fetch rate compared to the two other instruction types
discussed in the paper. Therefore, it is not really the technology of choice for demanding real-time
applications. A way out would be to fetch several instructions per memory access but that
introduces unpleasant complexity for branch destinations.

Keeping in mind that MicroCore is about putting a very simple and small processor core into FPGAs
for simple, embedded control, the latter drawback is tolerable because the instruction fetch delay,
even using external ROM, will hardly dominate total processor delay because all processor logic will
be contained in an FPGA and therefore, it will be substantially slower than an ASIC implementation
anyway.

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 7 of 23

The instruction

7
$80

6
$40

5
$20

4
$10

3
$8

2
$4

1
$2

0
$1

Lit/Op Type Stack Group

4.1 Lit/Op Bit

1: 7-bit Literal (signed)

0: 7-bit Opcode

The Lit/Op field is a semantic switch:

When set, the remaining 7 bits are interpreted as a literal nibble and transferred to the Top-of-Stack
(TOS) register. When the previous instruction had been an opcode, the literal nibble is sign-
extended and pushed on the stack. If its predecessor was a literal nibble as well, the 7 bits are
shifted into TOS from the right. Therefore, the number of literal nibbles needed to represent a
number depends on its absolute magnitude.

When not set, the remaining 7 bits are interpreted as an opcode. Opcodes are composed of three sub-
fields whose semantics are almost orthogonal: Type, Stack, and Group. Not all possible bit combi-
nations of these fields have a meaningful semantic easing instruction decoding complexity.

4.2 Type field

Code Name Action
00 BRA Branches, Calls and Returns
01 ALU Binary and Unary Operators
10 MEM Data-Memory and Register access
11 USR User instructions / immediate calls

BRAnches are conditioned on the group field and they consume the content of TOS, using either
TOS or TOS+PC as destination address. Although elegant, the fact that each branch has to pop the
stack to get rid of the destination address makes the implementation of Forth's IF, WHILE, and
UNTIL cumbersome. Therefore, the DROP_FLAG instruction has been implemented to get rid of
the flag prior to executing the branch. Calls push the content of the PC on the return-stack while
branching. Returns pop the return-stack using it as the address of the next instruction.

ALU instructions use the stack as source and destination for arithmetic operations. Unary operations
only use TOS, binary operations use TOS and Next-of-Stack (NOS) storing the result in TOS.
Complex math step instructions use TOS, NOS and TOR.

MEMory instructions refer to the data memory when the most significant bit of TOS, which holds the
address, is not set. When set, it refers to input/output operations with the external world. The
return-stack occupies the upper end of data-memory and the Program Memory may be accessed at
the I/O space if van Neumann addressing has been implemented. Eight internal registers can be
accessed directly using the Group field.

32 USeR instructions are free for any application specific functions, which are needed to achieve
total system throughput. The first four USeR instructions coincide with MicroCore's hardware
vectors RESET, ISR (InterruptServiceRoutine), ESR (ExceptionServiceRoutine), and OSR

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 8 of 23

(OverflowServiceRoutine). As a default, the remaining 28 instructions perform a call to 28 trap
vector addresses that have room for a sequence of instructions to be used to e.g. emulate multi-
cycle instructions.

4.3 Stack field

Code Name Action
00 NONE Type dependent
01 POP Stack->NOS->TOS
10 PUSH TOS->NOS->Stack
11 BOTH Type dependent

POP pops and PUSH pushes the data stack. The stack semantics of the remaining states NONE and
BOTH depend on type and on external signals INTERRUPT and EXCEPTION. This is where the
opcode fields are non-orthogonal creating instruction decoding complexity, which is gracefully
hidden by the synthesiser.

4.4 Group field

Instructions that are not available in the minimal implementation are set in italics.

The semantics of the group field depend on the type field and in the case of ALU and BRA also on
the stack field.

Of the binary operators NOS is used to realise OVER and NIP.

Unary operations are detailed below.

Of the conditions, NEVER is used to realise NOP, DUP and DROP. NZERO supports the use of the
Top-Of-Return-stack as a loop index. PAUSE and INT are conditions to aid in processing external
events INTERRUPT and EXCEPTION.

Of the registers, TOR is used to implement R@, whereas RSTACK implements >R and R>.

Code Binary-Ops
ALU

Unary-Ops
ALU BOTH

Complex-Math
ALU NONE

Conditions
BRA

Branches
BRA PUSH

Registers
MEM

000 ADD NOT MULTS NEVER DUP STATUS
001 ADC SL 0DIVS ALWAYS EXC TOR
010 SUB ASR UDIVS ZERO QDUP RSTACK
011 SSUB LSR not used NZERO QOVL LOCAL
100 AND ROR LDIVS SIGN INT RSP
101 OR ROL not used NSIGN IRET DSP
110 XOR ZEQU not used NOVL THREAD TASK
111 NOS CC SWAPS NCARRY TOKEN IP

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 9 of 23

5 Instruction Semantics
In the following tables the LIT-field is marked with - and +.

This indicates the following two cases:
‘-’: The previous instruction has also been an opcode; TOS holds the top-of-stack value.
‘+’: The previous instruction(s) have been literals; TOS holds a "fresh" literal value.

5.1 BRA instructions
LIT Stack act Operation Forth operators / phrases

* none none conditional return from subroutine
When Cond=ZERO or NZERO
Stack -> NOS -> TOS

EXIT NOP
?EXIT
0=EXIT

- pop conditional branch to Program[TOS]
Stack -> NOS -> TOS

absolute_BRANCH

+ pop conditional branch to Program[PC+TOS]
Stack -> NOS -> TOS

relative_BRANCH

* push Complex branches, see below DUP ?DUP
INTERRUPT
IRET
EXCEPTION
?OVL

- both pop
push

conditional call to Program[TOS]
Stack -> NOS -> TOS

absolute_CALL
DROP

+ both pop
push

conditional call to Program[PC+TOS]
Stack -> NOS -> TOS

relative_CALL
DROP

5.2 ALU instructions
Stack act Operation Forth operators / phrases
none none Complex math instructions, see below SWAP
pop Stack -> NOS <op> TOS -> TOS + - AND OR XOR NIP
push NOS <op> TOS -> TOS

 TOS -> NOS -> Stack
2DUP_+ OVER

both none TOS <uop> -> TOS
Unary math instructions, see below

0= 2* ROR ROL 2/ u2/

5.3 MEM instructions
Stack act Operation Forth operators / phrases
none pop Stack -> NOS -> TOS -> Register

LOCAL := Stack -> NOS -> Data[RSP+TOS]
TASK := Stack -> NOS -> Data[TASK+TOS]

>R, R!
store into local variables
store into task variables

pop Stack -> NOS -> Data[TOS+<inc>]
TOS + <inc> -> TOS

! pre-incrementing data
memory or I/O store

push Data[TOS+<inc>] -> NOS -> Stack
TOS + <inc> -> TOS

@ pre-incrementing data
memory or I/O fetch

both push Register -> TOS -> NOS -> Stack
LOCAL := Data[RSP+TOS] -> NOS -> Stack
TASK := Data[TASK+TOS] -> NOS -> Stack

R@, R>
fetch from local variables
fetch from task variables

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 10 of 23

5.4 USR instructions

By default, the USR instructions perform an immediate call to the following vector address:

vector_addr = instruction(4..0) * usr_vect_width
Therefore, each trap vector has room for usr_vect_width instructions.
Four trap vectors are used by MicroCore itself:
0: Reset
1: ISR: Interrupt Service Routine
2: ESR: Exception Service Routine
3: OSR: Overflow Service Routine

5.5 Complex Branches (BRA PUSH)

DUP TOS -> TOS -> NOS -> Stack
QDUP Performs a DUP when TOS is non-zero, otherwise does nothing
QOVL Performs a call to the overflow service routine when the overflow status bit is set
IRET Performs an EXIT and restores the status register from TOS
THREAD Threaded code interpreter.

IF Data[IP] < 0 THEN (most significant bit set)
 Program_Address <- Data[IP]
 IP <- IP+1
ELSE
 PC <- Program_Address - 1
 IP <- Data[IP]
 Stack <- NOS <- TOS <- IP+1
END IF
The two instruction sequence "THREAD >R" is a tag threaded code interpreter.
When the most significant bit is set, the remaining bits are an address of the code to be
executed.
When the most significant bit is not set, it is the address of another threaded code
definition.
The sequence "THREAD >R" will be automatically repeated until an executable code
sequence is located, pushing return addresses on the return stack appropriately.

TOKEN Token threaded code interpreter.
The two instruction sequence "THREAD TOKEN" is a token threaded code interpreter.
IF IP = address within token table THEN
 Program_Address <- Data[IP]
 IP <- TOS <- NOS <- Stack
ELSE
 >R
END IF

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 11 of 23

5.6 Unary Math Instructions (ALU BOTH)

SL Shift Left 0 -> LSB, MSB -> C

ASR Arithmetic Shift Right MSB -> MSB-1, LSB -> C

LSR Logical Shift Right 0 -> MSB, LSB -> C

ROR ROtate Rigth C -> MSB, LSB -> C

ROL ROtate Left C -> LSB, MSB -> C

ZEQU Zero EQUals When TOS=0, true -> TOS, otherwise false -> TOS

CC Complement Carry not Carry -> Carry

5.7 Complex Math (ALU NONE)

When both NOS and TOR are implemented, complex math step instructions are available.

MULTS is a step instruction for an unsigned multiply of two numbers producing a double precision
product. The multiplicand must be in NOS, the multiplier must be in TOR and the product
builds up in TOS || TOR.

Macro: umultiply (mult1 mult2 -- prod_l prod_h)
 >r 0 #data_width 0 ?DO mults LOOP nip r> ;

generates code for a multi cycle U* instruction, which is independent of the data word
width. U* may be interrupted at any time.

0DIVS, UDIVS, LDIVS are step instructions for an unsigned divide of a double precision dividend
by a divisor, producing a single precision quotient and the remainder. When the result does
not fit into the quotient, the overflow status bit will be set.

Macro: udivide (div_l div_h divisor -- rem quot)
0divs #data_width 0 ?DO udivs LOOP ldivs nip r> ;

generates code for a multi cycle UM/MOD instruction, which is independent of the data
word width. In order to execute the UDIVS instruction, the divisor must be in NOS, div_l
must be in TOR and div_h must be in TOS. 0DIVS takes care of this parameter set up
clearing the overflow bit as well. Each division step must take into account the most
significant bit of the previous step and therefore, a final step LDIVS is needed to produce a
valid quotient and to check for overflow. UM/MOD may be interrupted at any time.

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 12 of 23

5.8 Instruction Mnemonics

\ Conditional exits
NEVER NONE BRA Op: nop (--)
ALWAYS NONE BRA Op: exit (--)
ZERO NONE BRA Op: z-exit (flag --)
NZERO NONE BRA Op: nz-exit (flag --)
SIGN NONE BRA Op: s-exit (--)
NSIGN NONE BRA Op: ns-exit (--)
NOVL NONE BRA Op: no-exit (--)
NCARRY NONE BRA Op: nc-exit (--)

\ Conditional branches
NEVER POP BRA Op: drop_flag (flag brn_addr -- brn_addr)
ALWAYS POP BRA Op: branch (brn_addr --)
ZERO POP BRA Op: z-branch (brn_addr --)
NZERO POP BRA Op: nz-branch (brn_addr --)
SIGN POP BRA Op: s-branch (brn_addr --)
NSIGN POP BRA Op: ns-branch (brn_addr --)
NOVL POP BRA Op: no-branch (brn_addr --)
NCARRY POP BRA Op: nc-branch (brn_addr --)

\ Conditional calls
NEVER BOTH BRA Op: drop (n --)
ALWAYS BOTH BRA Op: call (brn_addr --)
ZERO BOTH BRA Op: z-call (brn_addr --)
NZERO BOTH BRA Op: nz-call (brn_addr --)
SIGN BOTH BRA Op: s-call (brn_addr --)
NSIGN BOTH BRA Op: ns-call (brn_addr --)
NOVL BOTH BRA Op: no-call (brn_addr --)
NCARRY BOTH BRA Op: nc-call (brn_addr --)

\ Complex branches
DUP PUSH BRA Op: dup (n -- n n)
EXC PUSH BRA Op: exc (--)
QDUP PUSH BRA Op: ?dup (n -- n n | 0)
QOVL PUSH BRA Op: ?ovl (--)
INT PUSH BRA Op: int (-- status)
IRET PUSH BRA Op: iret (status --)
THREAD PUSH BRA Op: thread (-- ip_addr)
TOKEN PUSH BRA Op: token (ip_addr --)

\ Binary operators
ADD POP ALU Op: + (n1 n2 -- n1+n2)
ADC POP ALU Op: +c (n1 n2 -- n1+n2+carry)
SUB POP ALU Op: - (n1 n2 -- n1-n2)
SSUB POP ALU Op: swap- (n1 n2 -- n2-n1)
AND POP ALU Op: and (n1 n2 -- n1_and_n2)
OR POP ALU Op: or (n1 n2 -- n1_or_n2)
XOR POP ALU Op: xor (n1 n2 -- n1_xor_n2)
NOS POP ALU Op: nip (n1 n2 -- n2)

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 13 of 23

ADD PUSH ALU Op: 2dup + (n1 n2 -- n1 n2 n1+n2)
ADC PUSH ALU Op: 2dup +c (n1 n2 -- n1 n2 n1+n2+carry)
SUB PUSH ALU Op: 2dup - (n1 n2 -- n1 n2 n1-n2)
SSUB PUSH ALU Op: 2dup swap- (n1 n2 -- n1 n2 n2-n1)
AND PUSH ALU Op: 2dup and (n1 n2 -- n1 n2 n1_and_n2)
OR PUSH ALU Op: 2dup or (n1 n2 -- n1 n2 n1_or_n2)
XOR PUSH ALU Op: 2dup xor (n1 n2 -- n1 n2 n1_xor_n2)
NOS PUSH ALU Op: over (n1 n2 -- n1 n2 n1)

\ Unary Operators
NOT BOTH ALU Op: invert (n1 -- n2)
SL BOTH ALU Op: 2* (n1 -- n2)
ASR BOTH ALU Op: 2/ (n1 -- n2)
LSR BOTH ALU Op: u2/ (n1 -- n2)
ROR BOTH ALU Op: ror (n1 -- n2)
ROL BOTH ALU Op: rol (n1 -- n2)
ZEQU BOTH ALU Op: 0= (n1 -- flag)
CC BOTH ALU Op: cc (--)

\ Complex Math Steps
MULTS NONE ALU Op: mults (u1 u2 -- u1 u3)
0DIVS NONE ALU Op: 0divs (ud1 u2 -- u2 u3)
UDIVS NONE ALU Op: udivs (u2 u3 -- u2 u3')
LDIVS NONE ALU Op: ldivs (u2 u3 -- u2 u3')
SWAPS NONE ALU Op: swap (n1 n2 -- n2 n1)

\ Data Memory access
N PUSH MEM Op: +ld (addr -- n addr+n)
N POP MEM Op: +st (n addr -- addr+n)

\ Internal Register access
STATUS BOTH MEM Op: status@ (-- status)
TOR BOTH MEM Op: r@ (-- n)
RSTACK BOTH MEM Op: r> (-- n)
LOCAL BOTH MEM Op: +lld (index -- n rstack+index)
RSP BOTH MEM Op: rsp@ (-- rstack_addr)
DSP BOTH MEM Op: dsp@ (-- dstack_addr)
TASK BOTH MEM Op: +tld (index -- n task+index)
IP BOTH MEM Op: ip@ (-- addr)

STATUS NONE MEM Op: status! (status --)
TOR NONE MEM Op: r! (n --)
RSTACK NONE MEM Op: >r (n --)
LOCAL NONE MEM Op: +lst (n index -- rstack+index)
RSP NONE MEM Op: rsp! (rstack_addr --)
DSP NONE MEM Op: dsp! (dstack_addr -- ?)
TASK NONE MEM Op: +tst (n index -- task+index)
IP NONE MEM Op: ip! (addr --)

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 14 of 23

6 Core Registers

6.1 STATUS

Bit Name Access Description
0 C R/W The Carry-Flag reflects the result of the most recent ADD, ADC, SUB, SSUB,

SL, ASR, LSR, ROR, and ROL instructions. When subtracting, it is the
complement of the borrow bit.

1 OVL R/W The Overflow-Flag reflects the result of the most recent ADD, ADC, SUB,
SSUB, UDIVS, and LDIVS instructions.

2 IE R/W Interrupt-Enable-Flag
3 IIS R/W The Interrupt-In-Service-Flag is set at the beginning of an interrupt-

acknowledge cycle. It is reset by the IRET (Interrupt-RETurn) instruction.
When IIS is set, interrupts are disabled. When the Status-register is read, IIS
always reads as '0'.

4 LIT R The LITeral-Status-Flag reflects the most significant bit of the previous
instruction.

5 N R The Negative-Flag reflects the content of the most-significant-bit of TOS or of
NOS when LIT=1

6 Z R The Zero-Flag reflects the content of TOS or of NOS when LIT=1

Z and N reflect the actual state of the top "number" on the stack. This may be in TOS (when LIT=0)
or in NOS (when LIT=1) because e.g. a target address may be in TOS.

For the ordering of the bits it has been taken into consideration that "masks" for masking off flags
can be loaded with only one literal nibble. This is important for the C- and IE-flags, see below.

6.2 TOR

Top-Of-Return-stack. This allows access to the return-stack without pushing or popping it.

6.3 RSTACK

Return-STACK. When RSTACK is used as a destination, a return-stack push is performed. When it
is used as a source, a return-stack pop is performed.

6.4 LOCAL

This register-addressing mode (MEM NONE LOCAL and MEM BOTH LOCAL) is included in
order to support C and its local variable mentality. These can be placed in a return-stack frame. The
actual data memory address is the sum of RSP+TOS. After the memory access, the absolute memory
address will remain in TOS.

6.5 RSP

Return-Stack-Pointer. It is used to implement the return-stack that is located at the upper end of the
data memory and it can be read and written to support multi-tasking and stack-frame linkage. The
return stack pointer width is defined on the VHDL level. For multi-tasking support, multiple return
stacks can be instantiated extending the address to the left of the return-stack-pointer itself.

6.6 DSP

Data-Stack-Pointer. It is used to implement the data-stack and it can be read and written to support
multi-tasking. The data stack pointer width is defined on the VHDL level. For multi-tasking support,

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 15 of 23

multiple data stacks can be instantiated extending the address to the left of the data-stack-pointer
itself.

6.7 TASK

The TASK register itself can be read and written via memory mapped I/O (address = -2). In a multi-
tasking environment it would hold an address pointing at the Task Description Block (TDB) of the
active task. The implementation of the multitasking mechanism is operating system dependent.
Variables that are local to a task can be accessed via the MEM NONE TASK (store) and MEM
BOTH TASK (fetch) instructions. The data memory address is the sum of TASK+TOS and after the
memory access the absolute memory address remains in TOS.

If the TASK register is not used for multitasking support, it constitutes a general base register for a
pre-incrementing base-offset addressing mode.

6.8 IP

The IP register is used to support tag and token threaded code. See: THREAD and TOKEN in the
complex branches group.

7 Memory Mapped Registers

7.1 FLAGS (read) / IE (write) (-1)

This is a pair of registers – FLAGS for reading, IE (Interrupt Enable) for writing.

An interrupt condition exists as long as any bit in FLAGS is set whose corresponding bit in IE has
been set previously. Interrupt processing will be performed when the processor is not already
executing an interrupt (IIS-status-bit not set) and interrupts are enabled (IE-status-bit set).

Typically at the beginning of interrupt processing (after calling the hard-wired interrupt handler
address ISR) the FLAGS-register will be read. One specific bit is associated with each potential
interrupt source. When a certain interrupt has been asserted, its associated bit will be set. All
interrupts are static and therefore, it is the responsibility of the interrupt service routine (ISR) of a
specific interrupt to reset the interrupt signal of the external hardware before the end of the ISR.

IE (Interrupt Enable) is a register, which can only be written, and it holds one enable bit for each
interrupt source. Setting or resetting interrupt enable bits is done in a peculiar way, which could be
called "bit-wise writing":

When IE is written, the least significant bit determines whether individual IE-bits will be set ('1') or
reset ('0'). All other bits written to IE select those enable bits, which will be affected by the write
operation. Those bits that are set ('1') will be written to, those bits that are not set ('0') will not be
changed at all. This way individual interrupt enable bits may be changed in a single cycle without
affecting other IE-bits and without the need to use a "shadow variable".

7.2 TASK register (-2)

The TASK register itself can be read and written at address -2. The TASK register sets the base
address for the MEM NONE TASK and the MEM BOTH TASK data memory access instructions.

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 16 of 23

8 Booting
Given MicroCore's hardware architecture, this is very simple:

A RESET signal resets all registers to zero. Because the code for a NOP { BRA NONE NEVER }
happens to be all zeros, the processor just fetches the instruction pointed to by the PC register (which
had also been reset to zero) in the first cycle. Therefore, the reset vector happens to be at memory
address zero.

9 Interrupts

9.1 The Interrupt Mechanism

At first, interrupt requests are synchronised.

In the succeeding cycle(s) the following mechanism will unfold by hardware design:

1st cycle:

The current program memory address will be loaded into the PC un-incremented.

The instruction BRA PUSH INT will be loaded into the INST register instead of the output of the
program memory.

2nd cycle:

Now, BRA PUSH INT will be executed that performs a CALL to the ISR-address, which is a
constant address, selected by the program address multiplexer and STATUS is pushed on the data
stack at the same time.

Therefore, only the first INT-cycle must be performed by special hardware. The second cycle (INT-
instruction) is executed by an instruction that is forced into the INST register during the first
Interrupt acknowledge cycle.

9.2 Handling Multiple Interrupt Sources

Whenever an interrupt source whose corresponding interrupt enable bit is set in the IE-register is
asserted its associated bit in the FLAGS-register will be set and an interrupt condition exists. An
interrupt acknowledge cycle will be executed when the processor is not currently executing an
interrupt (IIS-bit not set) and interrupts are globally enabled (IE-bit of the STATUS-register set).

Please note that neither the call to the ISR-address nor reading the FLAGS-register will clear the
FLAGS register. It is the responsibility of each single interrupt server to reset its interrupt signal in
the external hardware as part of its interrupt service routine.

10 Exceptions
The Exception signal complements interrupts:

An interrupt is an event that has not been anticipated by the software currently being executed.

An exception is an event that has not (yet) happened although anticipated by the software. Therefore,
the processor has to wait or - in the case of a multi-tasking environment - it would process another
task.

To my knowledge, the Transputer has been the first processor to realise an exception mechanism in
hardware, which was used to perform a task switch that was entirely realised in hardware. Nice as
this feature and the underlying philosophy of its programming language Occam may be, it crippled

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 17 of 23

the transputer for traditional programming languages. This in turn did make the transputer difficult to
understand and market. It never became really popular although its users were happy with it.

Nevertheless, hardware support for multitasking seems to be an attractive feature greatly simplifying
software engineering for complex systems. Analysing the real needs w.r.t. multitasking support it
occurred to me that a full-blown task switch mechanism in hardware is not really needed. Instead, a
mechanism that would allow to access resources that may not be ready yet using fetch and store
without the need to explicitly query associated status flags beforehand is all that is needed to hide
multitasking pains from the application programmer.

Therefore, MicroCore has an Exception mechanism to support multitasking or, to be less ambitious,
to deal with busy resources. Fortunately, it turned out that the implementation of this mechanism in
MicroCore comes almost for free and therefore, it is build into the core from the very beginning.

10.1 EXCEPTION Signal

An additional external control input has been added: EXCEPTION. When the processor intends to
access a resource, the resource may not be ready yet. In such an event, it can assert the EXCEPTION
signal before the end of the current execution cycle (before the rising CLK edge). This disables
latching of the next processor state in all registers but the INST register that loads BRA PUSH EXC
instead of the next instruction from program memory.

In the next processor cycle, BRA PUSH EXC will be executed calling the ESR-address (Exception
Service Routine).

The ESR-address will typically hold a branch to code, which will perform a task switch depending on
the operating system. This may be used to emulate the Transputer. Please note that the return address
pushed on the return-stack is the address of the instruction following the one that caused the
Exception. Therefore, before re-activating the excepted task again, the return address on the return-
stack must be decremented by one prior to executing the EXIT instruction (BRA NONE ALWAYS)
in order to re-execute the instruction, which caused the exception previously. Please note that no
other parameter reconstruction operation prior to re-execution is needed because the EXCEPTION
cycle fully preserves all registers but the INST register.

The EXCEPTION mechanism is independent from the interrupt mechanism. It adds one cycle of
delay to an interrupt acknowledge when both an interrupt request and an EXCEPTION signal
coincide.

In essence, the EXCEPTION mechanism allows to access external resources without having to query
status bits to ascertain the availability/readiness of a resource. This greatly simplifies the software
needed for e.g. serial channels for communicating with external devices or processes.

11 Data Memory Access
On a data memory access, TOS holds the base address and NOS holds/receives the value to be
exchanged with memory. Pre-incrementing access operators +LD and +ST have been defined. The
group field is used as a signed increment spanning the range from -4 .. 3 and after the memory
access, the incremented address remains in TOS.

Relative addressing into the return-stack may be used using the LOCAL "register". The actual
memory address is the output of the ALU-adder, adding the offset in TOS and the RSP. After the
memory access, TOS holds the physical address (pointer) of the memory access. As a further
alternative, relative addressing into the data memory can be performed relative to the TASK register
that points to the beginning of a block of memory that may e.g. hold variables that are local to a task.

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 18 of 23

11.1 Memory Map

Addresses are shown for a 16 bit data path width by way of example.

$FFFF
2**reg_addr_width
internal registers

memory mapped
external I/O

"van Neumann" 2**prog_ram_width
program memory 8 bit program memory cells

$7FFF
Return Stack
(growing towards
lower addresses)

2**data_addr_width

Data Memory

$0000

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 19 of 23

12 The Instruction Cycle
Due to the use of a tri-state uBus and synchronous blockRAM for the stacks and data and program
memory "caches", one basic uCore instruction cycle consists of four phases and therefore, at least
two input clock (sysCLK) cycles are needed for one instruction cycle.

sysCLK

 uCLK

Instruction
cycle

Instruction decode
while the uBus is
tri-stated

Data memory and
return stack address
computation

Next instruction
address computation

Latching of results,
write to memories,
instruction fetch

13 MicroCore Scaling
The values assigned to these VHDL constants are the ones used for the uCore100 prototyping board.

Important notice: Most of these settings have to be "ported" to the cross-compiler by setting
Constants in the load_<application>.f file appropriately.

13.1 Semantic Switches

CONSTANT syn_stackram : STD_LOGIC := '1';

When set to '1', the stack_ram will be relised as synchronous blockRAM. Otherwise, it will be
realised as asynchronous RAM, which may be internal or external of the the FPGA.

CONSTANT with_locals : STD_LOGIC := '1';

When set to '1', the Instantiates the LOCAL addressing mode relative to the return stack pointer
(RSP+TOS).

CONSTANT with_tasks : STD_LOGIC := '1';

When set to '1', the TASK addressing mode relative to the TASK register (TASK+TOS) will be
instantiated. For multi-tasking, tasks_addr_width (see below) has to be set appropriately as well.

CONSTANT with_nos : STD_LOGIC := '1';

When set to '1', the NOS (Next-Of-Stack) register will be instantiated. This is needed for the single
cycle SWAP instruction and the complex math step instructions.

CONSTANT with_tor : STD_LOGIC := '1';

When set to '1', the TOR (Top-Of-Return_stack) register will be instantiated. This is needed for the
decrement_and_branch instruction NEXT and the complex math step instructions.

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 20 of 23

CONSTANT with_ip : STD_LOGIC := '1';

When set to '1', the IP (Instruction Pointer) register will be instantiated. This is needed for the
THREAD and TOKEN instructions for interpreting threaded code.

CONSTANT with_tokens : STD_LOGIC := '1';

When set to '1', the TOKEN instruction will be instantiated, which allows rapid token threaded code
interpretation.

13.2 Vector Widths

CONSTANT data_width : NATURAL := 32;

This defines the data path width and therefore, the magnitude of the numbers that may be processed.
Please note that the object code will not change as long as the magnitude of the largest number to be
processed fits the data path width.

CONSTANT data_addr_width : NATURAL := 21;

This sets the address range of the data memory, which can at most be data_width-1 wide because the
"upper" half of the address range is used for external memory mapped I/O.

CONSTANT dcache_addr_width : NATURAL := 0;

Number of address bits of the data memory space that is realised as block-RAM inside the FPGA.

CONSTANT prog_addr_width : NATURAL := 19;

Program memory address width sets the size of the program memory. It can be at most data_width
wide because all program addresses have to fit on the return stack.

CONSTANT pcache_addr_width : NATURAL := 0;

Number of address bits of the program memory space that is realised as block-RAM inside the
FPGA. When pcache_addr_width=0, no internal RAM is used; when
pcache_addr_width=prog_addr_width, no external RAM is used at all.

CONSTANT prog_ram_width : NATURAL := 16;

Number of address bits that may be used to modify the program memory van Neumann style. If set to
zero, the program memory operates as a pure ROM of a Harvard Architecture.

CONSTANT ds_addr_width : NATURAL := 6;

Number of address bits for the data stack memory.

CONSTANT rs_addr_width : NATURAL := 8;

Number of address bits for the return stack memory.

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 21 of 23

CONSTANT tasks_addr_width : NATURAL := 3;

Number of address bits for the task address. 2**tasks_addr_width copies of the data and the return
stack will be allocated. The task address is added to the left of both the ds_address and the
rs_address.

CONSTANT usr_vect_width : NATURAL := 3;

The implicit call destination addresses for two adjacent USR instructions will be 2**usr_vect_width
apart from each other.

CONSTANT reg_addr_width : NATURAL := 3;

Number of address bits reserved for internal memory mapped registers that reside at the upper end of
the address space.

CONSTANT interrupts : NATURAL := 2;

Number of interrupt inputs and their associated FLAGS and Interrupt-Enable bits.

CONSTANT token_width : NATURAL := 8;

Number of bits for a token address of a token threaded system.

14 Software Development
An interactive software development environment for MicroCore is rather straightforward and it has
been realised under Linux.

A "debuggable MicroCore" has an additional umbilical interface that can be controlled by a
centronics port on the PC. The program memory, which must be realised as a RAM, can be loaded
across this interface. After loading the application, a very simple debug kernel takes control
exchanging messages with the host.

14.1 Forth Cross-Compiler

It loads on top of Win32Forth (Windows) or gforth (Linux) because these are free 32-bit system. It
produces a binary image for the program memory as well as a VHDL file, which behaves as the
program memory in a VHDL simulation. Because the Forth systems are 32 bit systems, the cross-
compiler only supports numbers up to 32 bits signed magnitude. For even larger data path widths, the
cross compiler has to be adapted accordingly if larger numbers need to be compiled.

It is a short but rather complex piece of code and my 4th iteration on implementing a Forth cross-
compiler in Forth.

The most challenging aspect was compiling MicroCore's branches, which, as relative branches, are
preceded by a variable number of literal nibbles. The cross-compiler at first tries to get away with
one literal nibble for the branch offset. If it turns out that this is not sufficient space for the branch
offset at the closing ELSE, THEN, UNTIL, REPEAT, NEXT, or LOOP the source code is re-
interpreted again, leaving space for the required number of literal nibbles in front of the branch
opcode.

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 22 of 23

14.2 C Cross-Compiler

A first implementation has been realised for an earlier version of MicroCore at the technical
university of Brugg/Windisch, Switzerland. The compiler is based on the LCC compiler, and a
MicroCore back-end was created that takes the syntax tree as input.

It turned out that the LOCAL addressing mode is all that is needed to support C's local variable
mentality.

15 Project Status
uCore_1.20 has been released after successful hardware implementation. A prototyping board with a
Xilinx XC2S200 FPGA is available sponsored by Forth Gesellschaft eV. Another prototyping board
with an Altera FPGA will be realised as well.

The Forth cross-compiler is operational for up to 32 bit signed literals. It’s already of production
quality. Some more effort could be spent on peephole optimisations.

The C cross-compiler is in a prototype stage producing code for an obsolete version. Another design
iteration is needed.

A single-step debugger as well as a simulator have been realised in C running under Linux.

The VHDL code has been written with scalability in mind. Therefore, both data and program
memory may be realised externally or internally using block-RAM inside the FPGA. As a further
option, some of the memory may be realised internally serving as low-power "caches".

MicroCore is small. A 32-bit implementation with all options enabled consumes 30% of the
resources of the XC2S200. With a 25 MHz clock it executes one instruction cycle every 80 ns.

As a next step, a USB controller that is part of the prototyping board will be configured such that all
control operations can be performed across the USB link, replacing the centronics umbilical:

• Loading an FPGA configuration

• Programming the on-board configuration EEPROM

• Loading a program into the program memory

• Resetting MicroCore

• Single-step debugging MicroCore

MicroCore scalable, Dual Stack, Harvard Processor

© Klaus.Schleisiek@hamburg.de, 16-Apr-04, Rev. 1.51 23 of 23

16 Licensing
Since the world does not wait for yet another processor architecture, I figured that I might as well
give it away for free. Therefore, MicroCore will be licensed in the spirit of the licensing terms of the
free BSD license applied to a hardware design. Everybody will be free to use MicroCore even for
proprietary designs without license fee. The only exclusive right I reserve to myself is the right to
appoint institutions that may verify conformance of derived work with the original MicroCore model.

At present, the open license will be restricted to what I call an "exploratory" license (see:
uCore_Exploratory_License.pdf). The rational is that at present I am not able to support MicroCore
on a large scale. Therefore, primarily Universities and Research Institutes are targeted as users in
order to build a support infrastructure. When a commercial project is planned on the basis of
MicroCore I will grant an unlimited, non-exclusive license free of charge when the support situation
has been clarified.

17 Acknowledgements
I would like to thank the following people, without whom MicroCore would be different or not exist
at all, namely:
Chuck Moore, who invented Forth and pioneered Forth hardware with the design of the NC4000.
Norbert Ellenberger, who backed the design of the FRP1600 that paved the way for the IX1.
Christophe Lavarenne who introduced the Transputer innovations to me.
Adolf Krüger, without whom the literal accumulator would probably still be in a separate register
instead of on the stack.

18 Bibliography
[3 instruction structures] Xiaoming Fan, Holger Heitsch, Tomasz Malitka, Bernd Rosenthal, and

Klaus Schleisiek "Three Instruction Set Structures for a Stack Processor", Proceedings
euroForth 1995, mail to: office AT microcore.org

18.1 Revision History

Version Date Remarks
1.40 21.1.01 First description after unifying TOS, LIT and ADDR registers
1.41 2.2.01 Unary CC-Instruction added
1.42 11.5.01 Remarks on pre-increment, post-increment data RAM addressing
1.43 23.5.01 FLAGS and IE register, multiple interrupts
1.44 2.6.01 Multitasking support added. Change in BRA NONE ZERO and NZERO
1.45 22.6.01 PAUSE-Instruction realised instead of BREAK, Patent-Application
1.45a 18.11.01 Paper for the 2001 euroForth Conference (Dagstuhl Castle)
1.46 11.1.03 Adaptation for the release of uCore_1.10
1.50 16.4.04 Revision after hardware implementation on the uCore_100 prototyping board
1.51 16.6.04 Revision after the Fehmarn Forth Gesellschaft meeting

	Design Philosophy
	Block Diagram
	Hardware Architecture
	Instruction Architecture
	Lit/Op Bit
	Type field
	Stack field
	Group field

	Instruction Semantics
	BRA instructions
	ALU instructions
	MEM instructions
	USR instructions
	Complex Branches (BRA PUSH)
	Unary Math Instructions (ALU BOTH)
	Complex Math (ALU NONE)
	Instruction Mnemonics

	Core Registers
	STATUS
	TOR
	RSTACK
	LOCAL
	RSP
	DSP
	TASK
	IP

	Memory Mapped Registers
	FLAGS (read) / IE (write) (-1)
	TASK register (-2)

	Booting
	Interrupts
	The Interrupt Mechanism
	Handling Multiple Interrupt Sources

	Exceptions
	EXCEPTION Signal

	Data Memory Access
	Memory Map

	The Instruction Cycle
	MicroCore Scaling
	Semantic Switches
	Vector Widths

	Software Development
	Forth Cross-Compiler
	C Cross-Compiler

	Project Status
	Licensing
	Acknowledgements
	Bibliography
	Revision History

