
Return to
Behavioral
Synthesis

- COSSAP
- Protocol
Compiler

Behavioral Synthesis
Methodology for HDL-Based
Specification and Validation

D. Knapp, T. Ly, D. MacMillen, R. Miller

Synopsys Inc.
700B E. Middlefield Rd

Mountain View, CA USA 94043

Abstract

This paper describes a HDL synthesis based design
methodology that supports user adoption of
behavioral-level synthesis into normal design practices.
The use of these techniques increases understanding of
the HDL descriptions before synthesis, and makes the
comparison of pre- and post-synthesis design behavior
through simulation much more direct. This increases user
confidence that the specification does what the user
wants, i.e. that the synthesized design matches the
specification in the ways that are important to the user.
At the same time, the methodology gives the user a
powerful set of tools to specify complex interface timing,
while preserving a user's ability to delegate
decision-making authority to software in those cases
where the user does not wish to restrict the options
available to the synthesis algorithms.

1.0 Overview

This paper describes a synthesis methodology that uses
high-level synthesis (HLS) of behavioral
hardware-description language (HDL) descriptions. HLS
has the distinguishing characteristic that operations are
automatically scheduled, i.e. assigned to states, as
opposed to lower-level synthesis, in which operations are
assigned to states by the user [1, 2, 3]. For example, in

1 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

an HDL description of a square root function, an operand
x would be loaded, a series of operations would follow,
and a single result r would be returned. The read x and
the write r might be fixed to particular states or times by
a communication protocol, but the internal operations that
compute the square root would be automatically
scheduled.

A prospective user of HLS will then ask a number of
questions. These will likely include the following:

How can I constrain I/O operations to fall into
particular cycles, or range of cycles, to meet existing
protocols?
How can I constrain I/O operations to have particular
timing relationships? For example, how can I constrain
a data ready strobe to be synchronous with data on
data ports?
How can I be confident that my interface timing
specification really works with the surrounding
hardware?
How can I give the scheduling software optimization
opportunities when my timing specification is not rigid?
For example, I might not care exactly when data was
transferred, as long as a corresponding strobe
remains synchronized with the data. Thus the strobe
and data should be locked together, but the locked
strobe/data pair of operations could move.
How can I be confident that the synthesized hardware
will really do what I want it to:
1. In the sense that it computes the right result,
2. In the sense that scheduling of I/O operations

does not 'break' its I/O protocols.

These questions can be reformulated as requirements on
the HDL description methodology to be used in conjunction
with HLS:

The original HDL description should be simulatable.
There should be a mode wherein the cycle by cycle
I/O timing of the original HDL description is preserved
exactly; i.e., no I/O timing difference will be allowed
between the pre-and post-synthesis descriptions. This
will allow direct comparison, on a cycle by cycle
basis, of the pre- and post-synthesis designs; it will
also allow the user to meet the most rigid cycle-based
timing protocols.
There should be a mode wherein timing relationships
between I/O signals can be simply and easily
preserved across synthesis, but where 'stretching'
(cycle level delay insertion) is permitted, so that the
user does not have to specify exactly how many

2 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

cycles a computation will take. This mode should allow
manual constraints. Such a mode allows comparison of
pre- and post-synthesis I/O timing between "similar
points" of the pre- and post-synthesis waveforms.
There should be a mode in which the user explicitly
specifies all timing constraints without reference to
the simulation behavior of the HDL; the only timing
constraints inferred from the HDL description are
ordering constraints among I/O operations sharing a
port. This mode gives the greatest flexibility, both for
optimization and for specification of complex timing
relationships; it is also the most difficult to use.

We call these three modes the cycle-fixed IO scheduling
mode, the superstate-fixed IO scheduling mode, and the
free-floating IO scheduling mode respectively. Each has
consequences for the style of HDL description and
validation methodology. These modes give the user a wide
range of choices in specifying I/O timing, with a
corresponding range of ways in which validation of the
specification and comparison of the implementation with
the specification can be performed.

1.1 Structure of this paper

The balance of this paper is structured as follows. In
Section 1.2, related work in this field is discussed.
Following that, in Section 2, some mode-independent
considerations and assumptions are described. In Section
3, the cycle-fixed mode is described in detail. Then in
Section 4, the superstate-fixed mode is described. In
Section 5, the free-floating mode is described. In Section
6, experience with the current software is described;
finally, in Section 7 the paper is summarized and
conclusions are drawn.

1.2 Related Work

High-level synthesis has been well described in the
literature; see, for example, Camposano[1], Gajski[2],
Maerz[3]. These tutorial papers describe the basics of
HLS systems. CALLAS [4] describes work in the area of
maintaining simulated behavior that is exactly the same
pre- and post-synthesis; this idea is reflected in the
cycle-fixed mode described here. The superstate-fixed
mode is related the High Level State machine of of [5],
and to the behavioral finite state machines (BFSM's) of
[6]. Our approach of validation through simulation is
typical of current industry practice; it complements, but
cannot completely replace, more formal methods [7].

2.0 Basic assumptions

3 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

The circuit to be synthesized by HLS consists of a
collection of always blocks (VHDL processes); each
always block will be mapped to hardware consisting of a
datapath and a control FSM. Each will be synthesized
separately. Control over timing makes use of clocking
statements in the source HDL. In Verilog, this can be
done by use of @(posedge clock) or @(negedge clock)

statements. These are used to separate I/O events that
are to happen in different clock cycles. Event triggers
using other signals are specifically disallowed, with the
exception of asynchronous reset and a special gating
methodology described in Section 2.2, used for
synchronizing I/O.

2.1 Reset

In order to handle resets in an intuitively appealing way,
we call attention to the always block (VHDL process) that
will be scheduled. In our methodology this block contains a
single all-encompassing, nonterminating loop, here called
reset_loop.

 always begin: bl
 begin: reset_loop
 // reset sequence behaviors
 forever begin
 // normal mode behaviors
 end
 end
 end

Inside reset_loop is a reset sequence; this consists of all
behaviors associated with reset. For example, in a
microprocessor the reset sequence would clear the
program counter, disable interrupts, and initialize the
stack pointer. The reset sequence may contain many clock
cycles, e.g. to initialize a RAM. Following the reset
behavior is the 'normal mode' loop, which does not
terminate either; this loop contains behaviors that are
executed until the next reset occurs. In a microprocessor,
for example, the normal mode loop would be the fetch /
execute cycle.

In order to simulate the effect of synchronous resets
correctly in the source HDL description, the user must
insert a statement of the form

 if (reset == 1'b1) disable reset_loop;

after every @posedge statement. This disable has the effect
of restarting the block (process) following a clock edge
upon which reset is found to be true. Simulation of
synchronous resets can be matched both pre- and
post-synthesis.

4 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

Another capability can also be provided in which the user
declares a reset pin to the synthesis software, which then
synthesizes the reset; but because the reset behavior is
not encoded in the HDL, resets cannot be simulated
correctly before synthesis using this technique.

Scheduling cannot handle exits triggered by a reset in the
same way as other exits, because there may be
read-before-write accesses in the HDL. Consider the
following:

 begin: reset_loop
 output<= x; // x is read before write!
 begin: main_loop
 x = v1;
 @(posedge clock);
 if (reset == 1'b1) disable reset_loop;
 x = v2;
 end
 end

In this situation, the assignments of x cannot be
rescheduled, because this would change the observable
behavior of the circuit immediately following a reset pulse.
If, for example, the second write to x was rescheduled
before the clock edge, then the output immediately
following a reset pulse would be v2 in the scheduled
design; but it would be v1 in the original description. So if
we are to allow read before write in the HDL, we must
either relax the requirement that all behaviors must be
identical, or we must forbid movement of such side effects
across clock boundaries. Side effects on variables that
are always written before they are read are not affected.

2.2 Registered outputs

VHDL signals and Verilog reg variables behave like register
or latch outputs. That is, they hold their values once set.
For implementation reasons, we chose to register all
outputs of HLS synthesized designs; thus a nonblocking
(signal) assignment becomes a register write. This has the
consequence that responses to external events cannot
happen until the cycle after the external event, as shown
in Fig. 1.

Figure 1 shows the behavior of a synthesized circuit
where the HDL input is of the general form

 if (Ready == 1'b1) then Data <= foo;
 @(posedge clock);

5 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

This timing corresponds to both input and output. Notice
that this timing diagram implies that the control FSM for
the synthesized data path is a Mealy machine; and that
the overall synthesized design is a Moore machine.

Here is an example combining an asynchronous reset and a
compact busy wait on a data strobe.

 while (strobe != 1) begin
 @(posedge clock or posedge reset);
 if (reset == 1'b1) disable reset_loop;
 end

3.0 Cycle-fixed mode

High-level synthesis in cycle-fixed mode can be described
by the following statement:

Cycle-by-cycle I/O timing is identical between the
pre-and post-synthesis designs.

This means that validation by simulation is straightforward:
a user need merely simulate the pre- and post-synthesis
designs side by side, and check for differences in the
outputs. Alternatively, the synthesized design can be
inserted into the original test bench without modifying the
test bench. The only differences that are visible involve
combinational delays in the form of setup and hold times;
for example, a delta-delay setup time would become a real
setup time, and a registered output pin will not transition
exactly on the clock edge, as it would in the
pre-synthesis simulation. This is shown in Fig. 2.

Notice that this mode only constrains the I/O operations
of the design. That is, the reads and nonblocking (signal)
writes of the HDL are tied to particular cycles. But this
still leaves optimization opportunities for the scheduling
algorithm: other operations (e.g. additions, memory
operations, and register reads and writes) can be shifted
in time, as long as they consume data after it has been
read in, and produce data in time to write it out. The I/O
operations provide a series of 'stakes in the ground' that
define time frames within which all other operations are
free to move.

6 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

The main advantage of cycle-fixed mode is that the user
can synthesize exactly the same timing diagram that the
original HDL specification shows in simulation; thus, if the
simulated HDL specification works in a particular context,
then the synthesized design will also work, assuming only
that setup, hold, and propagation delays, etc. as shown
in Fig. 1b meet the clock cycle time.

A further advantage of cycle-fixed mode is that simulation
of a zero-gate-delay model of the synthesized design will
match the original specification exactly; hence a simple file
difference program can be used to compare pre- and
post-synthesis designs. This is expected to have a
profound effect on user acceptance of HLS as a viable
tool in the design cycle: users are able to simply and
efficiently check the equivalence of designs before and
after synthesis.

There are a number of methodological and implementation
considerations that affect the way we can write and
implement cycle-fixed mode. These will now be described.

3.1 Numbers of clock edges

One consequence of the commitment to maintain exact I/O
equivalence in cycle-fixed mode is that numbers of clock
edges cannot be varied inside the scope of loops and
conditionals. To do so would distort the I/O timing of the
design.

3.2 Loop boundaries

Every loop of an always block must contain at least one
clock edge statement. The only exception to this is loops
with constant iteration bounds, which can be unrolled
during synthesis.

A loop can be thought of as a subgraph of a finite-state
machine (FSM) which forms a cycle. The synthesized

7 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

design will enter this cycle when the loop is executed, and
leave it when the loop is exited. Such a loop is shown in
Fig. 3.

The loop of Fig. 3 corresponds to the state labeled Loop
During each pass of the loop, the value of v2 will be
written to the output port o.

The main consequence of matching this behavior is the
splitting of the conditional test c. Notice that it was
necessary, in order to capture the timing of the original,
to have a state transition that bypassed the loop
altogether if c was false when it was first tested. This
means that the test must be performed in two places:
once in state prev, and once in state Loop. In general, it
is necessary to unroll the first state of the first pass
through a while loop in order to capture this behavior
correctly.

If we wish to avoid unrolling the first pass, then it is
necessary to rewrite the loop so that (1) there is a clock
edge on all paths between the writes of o1 and o3, and
(2) there is a clock edge between the conditional test and
any succeeding I/O, as shown in Fig. 4.

3.3 Conditional multicycle operations

A multicycle operation is one that has a longer

8 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

combinational delay than the clock cycle. This imposes
special constraints on synthesis in cycle-fixed mode,
because it is necessary to stabilize all data and control
inputs to the hardware block that implements the
multicycle operation. This includes all the control inputs of
all multiplexers that drive multicycle operations; clearly we
cannot afford glitches on these paths. But inserting these
registers means that we need to know what to strobe into
the registers one cycle before the multicycle operation is
to begin. Thus we need to add extra time, under some
circumstances, so that the stabilizing registers can be
properly loaded. This is illustrated in Fig. 5; we assume

 @(posedge clock);
 if (input_signal == 1'b1) begin
 x = input_read_1;
 y = input_read_2;
 tmp = x + y; // 2 cycle addition
 @(posedge clock); // strobe stab regs
 @(posedge clock); // 1st cycle of add
 @(posedge clock); // 2nd cycle of add
 out <= tmp;
 end
 @(posedge clock);

Figure 5. HDL description for a multicycle addition.

Notice that we needed three clock cycles to do this
properly: one to get the condition and strobe the
stabilizing registers, and two to perform the multicycle
addition. Notice also that such delays can often be
hidden, where the multicycle operations are not
constrained by I/O; but that in this case there is no
opportunity to hide the additional delay associated with
stabilizing the inputs.

3.4 Loop pipelining in cycle-fixed mode

Loop pipelining is a technique whereby a loop can be made
to act like a pipeline. Thus the loop has a relatively long
latency, i.e. the time from a data input to the
corresponding data output; and a shorter initiation
interval, which is the rate at which data can be delivered
to and read out from the loop. In cycle-fixed mode, and
with some extra constraints in the other modes, a simple
way to imply loop pipelining while maintaining timing
equivalence is to use a delayed assignment (in VHDL, a
transport delay) on the output statement. Suppose, for
example, we have a loop whose latency is ten cycles, but
whose initiation interval is two cycles; we can put an
output write after the second clock edge statement, with
a delay of eight cycles. This will simulate the same way
both before and after synthesis.

9 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

 while (condition) begin
 @(posedge clock); // 10 ns clock
 @(posedge clock);
 out <= #80 value; // delayed by 8 cycles
 end

4.0 Superstate-fixed Mode

The superstate-fixed I/O mode is used where the I/O
should inherit its general structure from the HDL, but
where there is some freedom to shift I/O operations in
time. Consider, for example, the two-wire handshaking
protocol shown in Fig. 6.

The two-wire protocol is insensitive to the time between
transitions; this makes it ideal for many applications. In a
case like this, the only things we really need to assure in
order to have correct timing are that (1) the signal
transitions occur in the right order, and (2) that the
transitions of Strobe and Data maintain a lockstep
relationship. Beyond that, the user might not care very
much how many clock cycles were inserted by scheduling;
other design optimization criteria (such as the number of
gates to compute the data value) might dictate more or
fewer clock cycles for this transaction. The cycle-fixed
mode is unsuitable for this kind of loosened specification
of timing: the user could be forced to edit the code many
times, with varying numbers of clock edge statements
each time, looking for the best implementation. The
superstate-fixed I/O scheduling mode can be expressed by
the following statements:

Adjacent pairs of clock edge statements in the HDL
form the boundaries of superstates.
All I/O operations in a superstate remain in that
superstate.
A superstate may be expanded by the scheduler,
which can add clock cycles to lengthen a superstate.
All I/O writes in a superstate will always take place in
the last clock cycle of the superstate.
I/O reads may float within a superstate.

These rules, taken together, mean that an HDL scheduled
in superstate mode will show the same signal transitions
and ordering as the original HDL; but that the original
timing may potentially be 'stretched' by the addition of
new clock edges. This is illustrated in Fig. 7, where the

10 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

original HDL simulation of an I/O transfer taking three
cycles has become five cycles long by the addition of two
extra cycles to the second superstate.

4.1 Protocols in superstate mode

One of the major advantages of superstate mode is that
handshaking I/O protocols are not distorted by the
addition of clock cycles to superstates. This has two
beneficial conseqences: first, comparison of simulated pre-
and post-synthesis designs is straightforward; and second,
protocols that are insensitive to increased numbers of
clock cycles will not be 'broken' by superstate scheduling.
Hence if a design consists of many processes, each of
which is to be scheduled, the use of handshaking
communication in conjunction with superstate mode
scheduling will ensure that the design will continue to work
after synthesis.

The same considerations apply to the simulation test
bench as well: the test bench must communicate with the
synthesized design(s) via handshaking protocols; otherwise
it may have to be modified to communicate successfully
with the synthesized design. This happens because the
read and write operations occur at different times pre-
and post-synthesis; the test bench must be able to
tolerate this, or the user will have to retime the test
bench.

Protocols that do not involve explicit requests and
acknowledges can still be used; but care must be taken
with data to be read in by the synthesized process. In
particular, recall that read operations may move freely
within their superstate. This means that data being
presented to the synthesized circuit must be either valid
during the entire superstate in which it is read, or else
retimed after scheduling. This will ensure that the read
operation always gets the correct data.

11 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

4.2 Constraints in superstate mode

The reason a designer would use superstate mode instead
of cycle-fixed mode is that some part of the schedule
does not have a fixed timing bound, and the user does
not want to imply such a bound by using cycle-fixed I/O.
However, the user may have a non-handshaking protocol,
or a protocol that streams data once synchronization has
been established by the protocol. In such cases the parts
of the schedule that perform synchronization may need to
be handled as if the scheduler was in cycle-fixed mode;
while the other parts of the design can be allowed more
freedom. For example, consider the fragment

 while (ready == 1'b0) begin: handshaking_loop
 @(posedge clock);
 end
 @(posedge clock);
 a1 = in_port; // label read_1
 @(posedge clock);
 a2 = in_port; // label read_2
 @(posedge clock);
 out_port <= long_involved_function(a1, a2);
 out_ready <= 1'b1; // label done
 @(posedge clock);

Here the external logic provides the data for read_1 and
read_2 in the two cycles after the signal ready goes true;
the synthesized system must pick it up then, or the
protocol will be broken. Furthermore, insertion of extra
cycles in the loop handshaking_loop will cause the interface
to behave unpredictably. Thus cycle-fixed mode would
seem to be indicated. However, suppose that there is no
need for the output to show up until 20 cycles after the
input has been delivered; the designer will thus want to
allow the scheduler authority to add cycles to the last
superstate, and rely on a test of the out_ready pin to
synchronize the data on out_port. Thus stretching can be
allowed in the last superstate, but not in the first three.

This can be done by means of explicit point-to-point
scheduling constraints; that is, constraints that tie two
labeled operations together in a particular timing
relationship. A constraint set that would serve the
purpose is

1. The time from the beginning of handshaking_loop to its
end should be exactly one cycle.

2. The time from the end of handshaking_loop to the
beginning of read_2 should be exactly one cycle.

3. The time from the end of handshaking_loop to the
data ready strobe done is no greater than 21 cycles.

Notice that these constraints are not part of the HDL;

12 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

but they are a necessary part of the methodology. They
can be implemented as pseudo-comments, as attributes, or
as directives in a separate scheduler command file. Notice
also that they can be applied to non-I/O operations as
well, in all three modes, to give the user a little extra
control over the scheduling process.

4.3 Superstate HDL methodology

Superstate mode defines superstates as containing the I/O
operations that fall between adjacent pairs of clock edge
statements. This definition has the consequence that
sometimes an HDL prepared for superstate mode needs
clock edge statements that are not needed in cycle-fixed
mode. For example, the text of Fig. 3 is ambiguous when
the HDL is considered as input for superstate mode. This
comes about because two writes are separated by a
conditional @posedge. If the loop condition is true, then
the writes should be in different superstates; if it is false,
then they should be in the same superstate. Clearly there
is no unique static assignment of I/O operations to
superstates in this situation.

Furthermore, there is an implicit ordering of operations
conferred by the sequencing of the HDL text; this
ordering cannot be allowed to come into conflict with the
ordering conferred by the migration of reads into any
cycle of their superstate and writes into the last cycle of
their superstate.

The HDL methodology rules that prevent ambiguities and
contradictions in superstate mode are:

1. A superstate that contains a loop continue is called a
continuing superstate. Implicitly, the last superstate
of a loop is also a continuing superstate. A continuing
superstate and the first superstate of the loop are
really the same superstate; there is no clock
statement on the execution path going from one to
the other. If a continuing superstate contains a write,
then the first state of the loop cannot contain any
I/O, because a write belonging to the continuing
superstate would be migrated to the end of the first
loop superstate: this would result in a violation of the
HDL's ordering constraints.

2. A superstate that contains a loop beginning cannot
include both an I/O write before the loop beginning
and any I/O operation inside the loop. For example,

 @(posedge clock);
 out_port <= write1_data;
 while (cond) begin

13 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

 read1_data = in_port; // Illegal!
 @(posedge clock);
 ...
 end

the write in this fragment conflicts with the read in
the beginning of the loop; they are in the same
superstate.

3. A write cannot precede a while loop that is succeeded
by any I/O operation, unless there is a clock edge
statement between either the write and the loop
begin, or between the loop end and the second I/O
operation.

4. A loop having a superstate in which both a loop exit
and an I/O write are located must have a clock edge
statement between the loop end and the next I/O
operation.

5. A conditional clock edge (e.g. an @edge on one
branch of a conditional) cannot be used to separate
a write from another I/O operation. This fragment is
illegal for that reason.

 out_port <= v1;
 if (cond) @(posedge clock);
 v2 = in_port;

5.0 Free-floating I/O mode

It will sometimes be the case that a user will need to
convey more freedom to the scheduler than is allowed by
the superstate I/O mode. For example, the user may wish
to allow two unrelated writes to be permuted. Consider
the fragment of Fig. 8.

 a1 = in_port1;
 a2 = in_port2;
 @(posedge clock);
 out_port_1 <= long_function_1 (a1, a2);
 @(posedge clock);
 b1 = in_port3;
 b2 = in_port4;
 @(posedge clock);
 out_port_2 <= long_function_2 (b1, b2);

Fig. 8. Writes to out_port_1 and out_port_2 may be
permuted.

In this situation, the user might not care whether the first
or the second function happens first; indeed, they could
be interleaved and the user might not care. But neither
superstate nor cycle-fixed mode will permit permutation of
I/O operations and waits; so a more powerful mode is

14 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

needed. The free-floating mode is characterized by implicit
constraints on single I/O ports and explicit user
constraints.

Implicit I/O port constraints are derived directly from the
HDL text and are imposed on the sets of reads and writes
that occur on a single port. These are formed into
partially ordered sets, one for each port, where the
ordering is derived from a static execution trace analysis
of the source HDL. The schedule constructed by synthesis
can only transpose two members of one of these sets if
there is no ordering relationship between them.

This, however, says nothing about ordering of reads and
writes that occur on different ports, which must be
explicitly constrained by the user, by means of the explicit
two-point constraints described in Section 4.2.

For example, in our experience a common early mistake in
free-floating mode is to expect a data strobe's timing to
be fixed with respect to that of the data being strobed.
This will not necessarily be the case if the user does not
issue explicit constraints.

The downside of this mode is the number of explicit
constraints that the user must construct. This can easily
be comparable in numbers of lines to the HDL input itself.
In addition, it is very easy to get such constraints wrong,
or to forget a crucial constraint; hence the cycle-fixed
and superstate modes are simpler and less error-prone to
use.

6.0 Experience

Support for the methodologies discussed above has been
built into a commercial product, the Synopsys Behavioral
Compiler(TM). This product is currently in use at a
number of sites. Of these, about half use Verilog as their
input HDL; the rest use VHDL.

Experience to date indicates that the superstate mode is
usually the most convenient from the standpoint of ease
of specification of complex timing behaviors. The next
most convenient is usually the cycle-fixed mode. The
reason for this is that the power of the free-floating
mode comes at the price of manually added constraints;
while the cycle-fixed mode requires the user to add clock
cycles to the source HDL when, e.g., the duration of a
particular loop is to be changed.

From the standpoint of ease of validation of results, the
cycle-fixed mode is usually a little more convenient than

15 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

the superstate mode. This is because the handshaking
protocols necessary to get the design talking to the test
bench after superstate-mode scheduling must be designed
and written in both the test bench and the specification;
or alternatively the test bench timing must be modified to
match the schedule of I/O of the post-synthesis design.

One area in which the free-floating mode seems to be
more convenient than the others is in that of exploration.
Here the user is more interested in getting a rough idea of
the cost and speed of a design or algorithm, than in
getting its interfaces exactly right. In this context, the
ease of turning the design around and the high degree of
freedom from methodological constraints makes it simpler
to change the design and resynthesize to see what the
overall results are. Then when the general outlines of the
algorithms, representations, etc. are clear the user can
begin to worry about the detailed I/O timing.

The overall effort of getting I/O interfaces right using
these three modes is usually less than the effort spent in
getting the best possible quality of results. Even with
behavioral synthesis, HDL writing styles still can have a
large impact on the quality of the synthesized circuit.
Examples that can affect synthesis quality are: loop
ordering, assignment of variables and arrays to memories,
choice of loop pipeline initiation intervals and latencies,
pipelined components, embedding combinational logic in
reusable function blocks, the tradeoff between multicycle
operations and fast clock rates, and the partitioning of
the design into datapath/controller subunits (i.e. always
blocks; in VHDL, processes). All are potentially of great
importance to the quality of results, and all represent true
engineering decisions that must be carefully considered if a
really good design is to be achieved.

7.0 Conclusion

We have presented HDL methodologies for the synthesis
of various kinds of I/O timing and protocols, and for
simulation-based validation of the synthesized design
against the original specification. Three modes of
scheduling I/O operations have been presented:

1. Cycle-fixed, in which the design has exactly the same
cycle-level I/O timing before and after synthesis;

2. Superstate-fixed, in which I/O operations are grouped
by pairs of @posedge statements; post-synthesis timing
behavior is a (potentially) stretched version of the
pre-synthesis timing; and

16 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

3. Free-floating, in which the only constraints on I/O
scheduling are either between operations sharing a
port or supplied by the user.

Some of the implications of the scheduling modes were
described. In the cycle-fixed and superstate modes, these
involve the placement of clock edge statements, loop
boundaries, conditionals, and I/O operations; while in the
free-floating mode there are no rules of this kind.

Experience with production software which implements
these methodologies has been described, and conclusions
based on that experience have been drawn.

References

1. R. Camposano, W. Wolf. "Trends in High-Level
Synthesis". Kluwer, 1991.

2. D. Gajski, N. Dutt, A. Wu, S. Lin. "High-Level
Synthesis: Introduction to Chip and System Design."
Kluwer, 1992.

3. S. Maerz, "High Level Synthesis." In The Synthesis
Approach to Digital System Design, P. Michel, U.
Lauther, P. Duzy, eds., Chapter 6. Kluwer, 1992.

4. A. Stoll and P. Duzy, "High-Level Synthesis from
VHDL with Exact Timing Constraints," Proceedings of
the 29th ACM/IEEE Design Automation Conference, pp.
188-193, IEEE, 1992.

5. R. A. Bergamaschi, A Kuehlmann, S-M. Wu, V.
Venkataraman, D. Reischauer, and D Neumann, "A
Methodology for Production Use of High Level
Synthesis," Workshop Proceedings, Sixth International
Workshop on High Level Synthesis, (1992).

6. W. Wolf, S. Takach, C.-Y. Huang, R. Manno, E.
Wu. "The Princeton University Behavioral Synthesis
System." Proceedings of the 29th ACM/IEEE Design
Automation Conference, pp. 182-187, IEEE, 1992.

7. K. L. McMillan, "Fitting Formal Methods into the
Design Cycle," Proceedings of the 31st ACM/IEEE
Design Automation Conference, pp. 314-319, IEEE,
1994.

I would like more...

17 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

| Home | Search | Site Map | Contact Us | Feedback | Help |
| Products & Solutions | Corporate | Newsroom | Education & Support | Partners |

Professional Services |

Trademarks/Copyright (C)1999 Synopsys, Inc. All Rights Reserved. Last Modified: Oct 13, 1997

18 of 18 99-04-04 ¿ÀÀü 6:45

DAC Best Paper http://www.synopsys.com/products/beh_syn/bc_dac.html

