

Ensuring Success in High-Speed System Design

Today's-High Speed Systems

- High-Speed Designs Require Faster Devices & Increasing Data Widths
- Wide Data Buses Demand Higher I/O Pin Count
- Faster Devices Exhibit Faster Edge Rates
- A Memory Interface is a Typical Example for Such a System

- Memory Interface Design
- Simultaneously Switching Outputs
- Altera Design Resources
- References

Memory Interface Design

Memory Interface Design Challenges

The Higher the Frequency, the Greater the Design Challenge

Altera Memory Interface Solutions

Challenge	Altera Resolution
Board-Level Challenges	 Simultaneous Switching Outputs (SSO) Guidelines Fully Verified Hardware Reference Platforms with Gerber Files Termination Recommendations & Board Design Guidelines SPICE & IBIS I/O Simulation Models
I/O Interface Challenges	 DQS Phase Shift Circuitry in Stratix[®] Series FPGAs Detailed Timing Margin Analysis for Non-IP Users Fully Optimized Memory Controller Intellectual Property (IP) Cores with Automatic Timing Analysis for IP Users
Controller Design Challenges	 Fully Optimized Memory Controller IP Cores with Automatic Timing Analysis & Functional Simulation Capabilities Feature-Rich Phase-Locked Loops (PLLs) to Manage Clocks

Example: DDR2 Read Timing Margin Analysis

Signal Integrity & Board Design

Design Item	Effect on Performance/Reliability of the System
Bus Width	Increasing Bus Width Increases SSO Noise & also Increases Board Design Complexity
Noise	Causes Bit Errors, Effects Signal Integrity & Degrades Performance & Reliability
Loading	Increasing Number of Devices or Modules will Reduce Performance
Termination Scheme	Termination Scheme & Resistor Values Affect Signal Quality & Performance

Board Simulations Should be Performed to Check for Signal Integrity

Simultaneously Switching Outputs

Increased Bus Width, Pin I/O Counts & Inherent Package Trade-Offs Can Introduce More SSO Noise

- I/O Count vs. I/O Drive Strength

An FPGA Offers the Flexibility to Employ Reduction Techniques to Minimize Detrimental Effects of SSO

Simultaneous Switching Outputs (SSO)

Components of SSO Noise

Ground Bounce

Power Bounce Commonly Referred to as Vcc Sag

What is SSO Noise?

- Ground Bounce & Vcc Sag are Voltage Fluctuations on a Static Signal (Quiet) as a Result of High Current Change (di/dt) from Nearby I/O Buffer Circuitry that Share Common Ground (Vcc) Return Paths
- Ground Bounce Affects Static Low Signals;
 Vcc Sag Affects Static High Signals
- Enough Ground Bounce or Vcc Sag on a Static Signal May Cause Sampling of Wrong Data, Depending on:
 - I/O Standard Used
 - Available Noise Margin
 - Amount of Ground Bounce
 - When the Signal is Sampled

Ground Bounce Circuit Model

- L1 is Lumped Inductance for Die, Bump, Package, & Ball
- Output Buffer Current i(t) = C * dv/dt
- Voltage Across L1
 v(t) = L * di/dt
- High-to-Low Transitions on Output Raises Local Ground V

Ground Bounce Circuit Model

- Key Equations i(t) = C * dv/dtv(t) = L * di/dt
- Output Voltage (b) with Certain Slew Rate
- Induces Current (c) through Pull-Down Transistor & L1
 - Ideal Waveform
- Creates Voltage Ground Bounce (d) in **Outputs via NMOS Transistors**

Impact of Ground Bounce (cont.)

If Enough Outputs Switch Simultaneously to Induce 0.8V of Ground Bounce on a Nearby "Victim" Pin, that Pin Momentarily Glitches to 0.8V

- 3.3-V LVTTL, Maximum V_{IL} is 0.7V

- If Victim Pin is Clocked During the SSO Event, the Sampled Value May Be Wrong
 - Similarly Applies to Vcc Sag & V_{IH} Minimum.

Impact of Ground Bounce

- Ground Bounce
 - Effects Worse than Power Bounce
 - Can Cause Logic 1 Instead of 0 in Extreme Cases
- Vcc Sag
 - Causes Drop in Power Supply
 - Can Affect Outputs
- Both Cause Degradation in Waveforms

Elements That Contribute To SSO Noise

- Package:
 - Number of Power/Ground Pins
 - Reference Planes
 - Decoupling
 - Package Type (Flip-Chip vs. Wirebond)
 - Majority of SSO Noise Occurs at Package Level
- Board:
 - Decoupling Capacitors
 - Power Ground Planes
 - Sockets
 - Vias

Packaging

- Wire-Bond: Lacks Referencing Structures for Every Signal Trace, thus Contributes to Overall High Inductance
- Flip-Chip: Signal Bumps Enter the Package Laminate without Having to Traverse through Long, Unreferenced Wire-Bonds

Flip-Chip Vs. Wire-Bond

Wire-Bond

Flip-Chip

Techniques For Reducing SSO Noise

- Use Flip-Chip Package
- Add/Utilize Better Return Paths
 - Use Unused I/O Pins as Programmable Vcc & GND
- Use Lower Drive Strength
- Use Slow Slew Rate (SSR) vs. Fast Slew Rate (FSR)
- Proper I/O Pin Selection
- Add Decoupling Capacitors & on Board Power Ground Capacitance
- Proper Trace Layout
- Remove Sockets
- Use On-Chip Termination

All Techniques Verified Using Stratix[®] & Stratix GX Reference Boards

Utilize Unused I/O Pins as Programmable Vcc & GND

# of I/O Pins Switching	Ground Bounce (mV)	Vcc Sag (mV)
20: All Pins Switching	650	1,020
20: Every Other I/O Pin switching	490	910
20: Every Other I/O Pin Switching & Every Other Tied to Ground	364	820
20: Every Other I/O Pin Switching & Every Other Tied to Power	490	700
24: Every Third I/O Pin Switching, Every Third Tied to Power & Every Third Tied to Ground	300	320

Results For 24 mA LVTTL I/O Pins

Use Lower Drive Strength

# of I/O Pins Switching	Drive Strength	Ground Bounce (mV)	Vcc Sag (mV)
20: All I/O Pins Switching	24 mA	650	1,020
20: All I/O Pins Switching	12 mA	456	730
20: All I/O Pins Switching	4 mA	328	660

Results For LVTTL I/O Pins

Turn on Slow Slew

8 mA Drive Strength, _____ 40 3.3-V LVTTL I/O Pins, Switching Simultaneously

Switching	With Fast Slew Rate	With Slow Slew Rate
Bounce (mV)	288	200
Vcc Sag (mV)	620	310

Delay Shift SSO pins

Reduces Current Density

Add PLL Phase Shift, or Add Output Timing Delays

Spread Out Selected I/O Pins

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
А		VCCN	VSS	A21	A22	A23	A24	A25	A26	A27	A28	A29	VCCN	VSS	
В			B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30	B31	VSS
с			C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	C31	
D		D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30		
Е		E19	E20	E21	E22	E23	E24	E25	E26	E27	E28	E29	E30		
F		F19	F20			F23	F24	F25	F26	F27	F28	F29	F30		
G				G21		G23	G24								
н				H21		H23									
J					J22	J23									
к						К23									
L						L23									
М						M23									
N		VCCN	VSS	VCCN	VSS		VSS								

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
А		VCCN	vss	A21)	A22	(A23)	<u>@</u>	<u>~25</u>	<u> </u>	<u>(A27</u>)	<u>~28</u>	<u>A29</u>	VCCN	VSS	
В			B20	B21)	B22	B23	B24	B25	B26	B27	B28	82 9	<u>(30</u>	B3)	VSS
С			(20)	C21	C22	C23	C24	C25	C26	C27	C28	C29	3	3	
D		019	(020)	D21	D22	D23	D24	D25	D26	D27	D28	D29	030		
Е		E1 9	E20	E21	E22	E23	E24	E25	E26	E27	E28	E29	E30		
F		E19	E20			F23	E 24	E 25	F26	(27)	E28	E29	F3 0		
G				<mark>(621</mark>)		<u>623</u>	<u>©</u> 24)								
Н				(H21)		H23									
J					J 22	<u>(123</u>)									
к						<mark>(K23</mark>)									
L						23									
М						<u>M2</u> 3									
N		VCCN	VSS	VCCN	VSS		VSS								

Bounce = 570 Sag = 1,017 mV

Bounce = 412 Sag = 810 mV

On-Board Power Ground Capacitance

Solid Power & Ground Planes

Configuration	Ground
Connguration	Bounce
Ground/Power, 140 mils from IC, 6 mils Apart	370 mV
Ground/Power, 20 mils from IC, 6 mils Apart	248 mV
Ground/Power, 20 mils from IC, 4 mils Apart	228 mV

Decoupling Capacitors

- Decoupling Capacitors Provide Localized Power Supply
 - Capacitance Stores Energy & Provides It When There Is Transient Requirement
- When Solid Power/Ground Sandwich Present, High Frequency on Board Capacitors Can Be Useless if Path to IC Is Very Inductive
- Bigger Capacitors Are Effective for Lower Frequency Noise

Stratix II FPGAs Offer On-Chip Decoupling, an Optimal Solution to Provide Better Return Paths

Other Techniques

- Don't Use Any Sockets between IC & Board
 - Reduces Inductance
- Differential Signaling Helps with SSO
 - Traces Should Be Tightly Coupled
- Series On-Chip Termination Reduces SSO by Absorbing Reflections
 - Slows Edge Rate

Worst Case (Before Optimization)

Combination of Several Factors Can Significantly Reduce Ground Bounce & Vcc Sag Noise

40 SSO Pins, 24-mA Current Drive, FSR, No Delay, No Programmable Grounds

Nominal Case

40 SSO Pins, 36 Interleaved Programmable Powers (Red) & Grounds (Green), 16-mA Current Drive, FSR, 22 Pins with 3-ns Delay (Yellow)

40 SSO Pins Far Away, 36 Programmable Powers (Red) & Grounds (Green) around Quiet Pin, 4-mA Current Drive, SSR, 20 Pins with 3-ns Delay

Altera Design Resources

Modeling

Objective of SSO Modeling

- Explore, Derive & Verify a Robust Methodology that Can Be Consistently Used in Future SSO Analysis
- Simulate & Correlate the Results Obtained from Lab Measurements
- Generate & Validate Simulation Models that Can Be Used as a Black Box for 'whatif' Analysis

SSO Model Extraction Flow

- Translation of Database
 - Translate Package MCM File into Sigrity SPD Format
- Structure Verifications/Modifications
 - Verify Stackup, Material Properties, Plane Shape, Via/Trace Dimensions
 - Add Board VCC & Ground Planes
 - Others
- Mesh Settings
 - Add Solder Ball Vias
- Error Corrections
- Coupled Line Selection
- Define Ports
- Pre-Simulations Tests
 - DC Test
 - AC Test
 - Signal Transmission Test

Simulation Flow Using HSpice

Simulation Flow Using ADS (Optional)

The Simulation Flow Will Be Updated after ADS Model Becomes

SSO Modeling Matrix Chart

Task	Number of I/O Pins				Current Strength			I/O Location			
	1	10	40	Max	Min	Тур	Max	VIO	HIO	SSTL2	LVTTL3.3V
SSN Measurement										P1	P1
SSO Timing Push Out										P1	P1
SSO vol/voh Violation										P1	P1
Vref										P1	
Programmable Power/GND Ppins						•				P1	P1
Indivudual vs. Adjacent Banks											
Distribution of I/O Pins											
SSN Measurement											

HSpice Models

- Encrypted HSpice Models For All I/O Pins
- Models Are Accompanied by Correlation Report
 & User Guide
- Package Models:
 - Distributed Models
 - Lumped Models

SSO Kit

- S-Parameter Models Using Sigrity Power SI
- HSpice Models Derived From S-Parameter Models Using Broadband Spice

Other Modeling Collateral

HSpice Kit

 Library Of Transmission Line Models, Via Models & Connector Models, Correlated with Lab Measurements

Design Services Partner Program

Premise Behind Partner Program

- Altera Partners with Best-in-Class Engineering Firms to Provide Altera–Based Design Services for Mutual Customers
- Altera's Motivation
 - Expand Technical Resource Base
- Partner's Motivation
 - Worldwide Co-Marketing
 - Access to a Large Sales Channel
 - Access to Worldwide Customers

Benefits to Customers

Single Contact Point

Focus on Specification

Reduced Time-to-Market

Access to Expertise Improves System Performance

Characteristics of Partners

- Altera Partners with Only the Best & Partners Are Limited in Number
- Characteristics of Partners:
 - Aligned Along Vertical Market Segments
 - Expertise at Architectural Level (Not at Socket Level)
 - Identified as Being Leaders in Their Segment
 - Significant Size & Financially Secure for Credibility
 - Already Known & Trusted by Customers
 - Worldwide Position
 - No Universal Pricing Method, Pricing Negotiated between Customer & Consultant
 - Supports Customer Directly

For More Information, Log onto <u>www.altera.com</u>, or Speak to Your Local Altera Sales Representative

Additional Altera Resources

Memory Interface Standard Deliverables

Memory Solutions Center

<u>Home > Technology Center > Memory</u>

Memory Solutions Center The Memory Solutions Center provides all the resources needed for designing memory interfaces with Altera® FPGAs. Available resources include technical

memory interfaces with Altera® FPGAs. Available resources include technical documentation, software and tool support, characterization reports, intellectual property (IP) cores and reference designs, demonstration boards, and simulation models.

DRAM DRAM Devices Overview DDR SDRAM DDR2 SDRAM RLDRAM II IAX° II CP SDR SDRAM ver System Co Save Time Net Sem View Now SRAM SRAM Devices Overview QDR/QDR II SRAM Stratix ZBT SRAM Embedded Memory Embedded Memory Introducing the **Biggest &** Fastest FPGAs

Web Site to Provide Easy Access to Memory Support Information

ADERA.

Print This Page E-mail This Page

Introducing

The World's Most

Benefits of Altera's Memory Solution

- Simplifies Memory Interface Design Process
 - Dedicated Circuitry in Silicon, Software & Tool Support
- Ensures First-Time Design Success
 - Hardware Reference Platform for Design Verification
- Reduces Design Cycles
 - IP Core Support, Detailed Documentation

Complete System-Level Solution

Stratix II High-Speed Development Board

- Designed for the Development of Applications that Incorporate High-Performance Interfaces
 - Stratix II EP2S60F1020C3 FPGA
 - External Connectors for a Broad Array of Applications

More Information

- Simultaneous Switching I/O Noise Guidelines for Stratix & Stratix GX FPGAs
- Minimizing Ground Bounce & Vcc Sag <u>http://www.altera.com/literature/wp/wp_grndbnce.pdf</u>
- Basics of Signal Integrity White Paper <u>http://www.altera.com/literature/wp/wp_sgnIntgry.pdf</u>
- High-Speed Board Layout Guidelines <u>http://www.altera.com/literature/an/an224.pdf</u>
- Guidelines for Designing High-Speed FPGA PCBs <u>http://www.altera.com/literature/an/an315.pdf</u>

More Information (cont.)

Visit Altera's Memory Solution Center at: <u>www.altera.com/memory</u>

Thank You !

