=Acts)/

Application Note

Designing with FPGAs

Compared with SSI/MSI Devices

Field programmable gate arrays (FPGAs) are powerful
devices for implementing complex digital systems. FPGAs are
best used with an understanding of the key differences
between FPGAs and previous logic technologies. This
document focuses on FPGAs compared with small scale
integration (SSI) and medium scale integration (MSI)
devices. Understanding these differences and using design
techniques appropriate for FPGAs results in 50 to 100
percent improvement in speed and density compared to
design styles that treat FPGAs and SSI/MSI equally.

Discrete Logic Replacement

An estimation of the size of an existing SSI/MSI design may
be determined by using the design’s parts list. The data book
lists the number of Actel logic modules needed to build each
of the soft macros. Multiplying the number of logic modules
needed by the quantity of any part used will give the total
number of logic modules required for any one function.
Consider the parts list in Table 1 for a TTL design. Select an
Actel equivalent macro for each item on the parts list, and
note the number of modules required. (In this case, there are
S-modules and C-modules, since this is a 1200XL design.)
Sum the product of macro quantity and number of modules
per macro for all listed macros. In this case, the design
requires 250 C-modules and 134 S-Modules, which fit in a
1225XL device with a utilization of 63 percent.

Comparing Technologies

SSI/MSI building blocks are created by optimizing the
number of pins on popular functions to fit in the small
packages available. Logic functions are typically constructed
of a few hundred popular building blocks such as counters,
multiplexers, shift registers, and comparators. The typical
design is optimized to reduce package count, and techniques
have evolved to make the most use of a device. For example,
simple state machines are constructed from counters and
decoders with appropriate pins tied to logic one or zero. This
technique minimizes package count, which is the primary
cost factor in SSI/MSI designs. The interconnect in these
designs is done on the PC board with negligible timing delays.
FPGAs, on the other hand, have abundant package pins but
are constrained in routing resources, so different techniques
are required.

Macro Libraries

Actel provides libraries with the basic system for popular
schematic capture tools. The library contains both hard
macros and soft macros. Hard macros are similar to SSI
components. They form the basic functional building blocks,
such as gates and flip-flops. Some Actel hard macros are
identical in function to TTL devices, although they have
different names. For example, Actel's TAQO is a single two
input NAND gate that is a substitution for the quad two input
NAND SSI device 74LS00.

Table 1 = Converting Sample Designs from TTL to Actel Macros

Number Per Macro Total
No. Partno. Description Pacl?;ges Actel Macro S-module C-module S-module C-module
74LS161 4-bit counter 3 TA1l61 4 10 12 30
74F151 8:1 multiplexer 4 TA151 0 5 0 20
3 74LS684 gﬂp“;g%or 2 MCMPC8 0 36 0 72
4 74LS377 8-bit register 6 TA377 8 0 48 0
5 74F166 8-bit shift register 8 SREGS8A 8 0 64 0
6 74LS74 Dual D flip-flop 9 DFPC 1 0 18 0
7 74F113 Dual JK flip-flop 4 JKF1B 1 0 8 0
8 74F04 Inverter 2 n/a 0 0 0 0
9 74F32 Quad OR gate 2 OR2 0 1 0 8
10 74F08 Quad AND gate 1 AND2 0 1 0 4
April 1996 4-9

© 1996 Actel Corporation




=Acts/

Soft macros are more complex functions built from a number
of hard macros. Some soft macro examples are counters,
decoders, and adders. All soft macros are easily copied,
modified, and saved in user libraries. Should you need an
SSI/MSI function for which there is no equivalent in the
library, it is easy to build it by creating the schematic from a
TTL manual, using the Actel library. The Actel FPGA Macro
Library Guide contains complete information on all the Actel
library components, including a specific TTL section.

If you do not require all the outputs of a soft macro, you do
not have to modify the macro. The Actel combiner program
(invoked during compile) will automatically eliminate any
unused modules before the design is placed and routed. All
macro inputs, however, must be connected to another module
output, Ve, or ground. For optimal module usage, it is best to
copy the macro and the underlying schematic and then edit
both of these to reflect the logic reduction.

Three-State Implementation

Many SSI/MSI devices have three-state outputs allowing them
to be connected to a common bus. The three-state function
should be implemented with a multiplexer, which is
particularly effective in an Actel FPGA. Figure 1 shows a
three-state SSI/MSI implementation as well as the FPGA
multiplexer implementation. An 8-bit bus with four possible
drivers can be implemented with only eight logic modules, or
less than 3 percent of an Actel A1010 device.

State Machine Techniques

A common state machine design technique with MSI devices
uses a loadable counter to implement a state machine. Load
inputs are tied to a jump address. (Sometimes logic is used if
more than one jump address is needed.) The counter either
counts (to advance to the next state) or loads (to jump to a
different state). This is efficient in MSI devices, since it
requires only a couple of packages to implement a simple
state machine. Although this design technique reduces MSI
package count, it results in inefficient logic usage for FPGAs.
The bit-per-state technique is much more efficient and easier
to design when using FPGAs. (See the “Designing State
Machines for FPGAs” application note in this data book.)

Another common inefficient FPGA design technique uses a
single large state machine instead of multiple
communicating small state machines. In MSI devices,
sometimes a single microcoded state machine controls a
complex data path. This works well since large registered
PROMs are available to implement a design in a small
number of packages. However, these designs are complicated,
since each state could have several activities occurring
simultaneously, and the interactions between each activity
need to be checked in every state. In FPGAs, multiple
communicating state machines are easier to design, since
most of the communication is local, and only a few activities
need to be communicated between different state machines.
The distributed machines tend to have much simpler logic

EA BIT [0]
Al I/ l/T EC
EB T\I\ \]
B0 P I/T ED
L EA AN
S1— — EB
Decode
SO — —— EC
— ED

Discrete Technology Implementation

BIT [0]
s1
)
A[0]
c o] B [0] r\j_lx
c[o]
D [0]
D [0]

Actel FPGA Implementation

Figure 1 = Least Significant Bit of a Bus with Four Possible Drivers

4-10



Designing with FPGAs Compared with SSI/MSI Devices

requirements that also fit better with the FPGAs
register-rich, small-logic building-block characteristics. This
approach is also better for FPGA routing, because the routing
resource requirements are more distributed.

Data Path Oriented Techniques

If counters that are loaded only occasionally are required,
prescaling techniques can be used to improve operating
frequency. However, these techniques also result in slower
load capability. Applications that need to generate long
address sequences (for example, memory access) can use
this load latency counter very effectively and can operate at a
higher speed compared with nonlatency versions.

Nonlatency counters designed using look-ahead techniques
have better performance than do MSI equivalents. These
methods do not impose any additional constraints on the
application, as does the load latency counter, but they take
advantage of the register-rich nature of FPGAs in
implementing counter functions. For example, in a 16-bit
downcounter, each register should roll over after the counter
reaches all zeros. Instead of detecting the all-zero case by
placing combinatorial logic after the counter registers, logic
can be placed in front of a register to detect the case in which
the counter contains a 1 and is counting down. The register
will then be active on the same cycle in which the counter
contains all zeros, saving the combinatorial delay associated
with the all-zero detection.

Actel provides an automated tool (ACTgen Macro Builder) to
assist designers with the creation of a wide variety of
counters, adders, and other datapath functions.

Random Logic Oriented Techniques

Many of the SSl-oriented techniques that designers use for
random logic translate directly into FPGA devices because of
the similarity of the basic building blocks. You must keep in
mind that routing resources are limited inside FPGAs,
whereas routing resources in SSI designs on PC boards are
virtually inexhaustible. Sections of logic that use too many
different clock sources and high fan-in may overly constrain
routing. For example, it is usually more efficient to use a
synchronous clock source with synchronous enables instead
of a large number of individual clock signals to load
individually selected data bits into registers because
synchronous enable signals have more routing flexibility than
do clock signals.

Since FPGAs are most efficient at implementing logic at the
input of registers, a good rule of thumb in implementing
random logic is to use logic at the input of registers instead of
at the outputs wherever possible. For example, multiplexing a
signal prior to a register is more efficient than multiplexing
the signal after the register.

Conclusion

SSI/MSI designers can easily use FPGA technology to reap
the benefits of lower cost, smaller board size, and lower
power. However, using different techniques that are better
suited for FPGAs will allow between 50 and 100 percent
improvement in performance and capacity.

4-11




=Acts/

4-12



