=Acts)/

Application Note

FPGA Design for

ASIC-Experienced Designers

Actel FPGAs allow designers familiar with ASIC and HLD flow
to make an easy transition to FPGA design. The Actel flow is
similar to the typical HLD flow, but optimum results are
achieved only when the designer keeps in mind a few key
concepts: the Actel architecture, coding style, and
methodology. This application note introduces the
ASIC-knowledgeable designer to designing with Actel
FPGAs and describes in detail the key concepts required to
obtain good synthesis results.

FPGA Design with High-Level Design
Tools

Actel FPGAs closely follow the expected ASIC design flow.
HLD design source can be simulated with a behavioral
simulator and a test bench. Once the design simulates
correctly, a behavioral compiler can generate netlists that
can be used for postsynthesis verification. If the verification
is successful, the netlist can be compiled in the back-end
place-and-route tools from Actel Designer Series 3.1.
Post-place-and-route ~ timing information can be
backannotated for final timing verification. In addition,
Designer Series 3.1 allows timing constraint entry for place
and route, which can help ensure that timing targets are
achieved by the place-and-route tools.

This flow should be similar to the flow that experienced ASIC
designers have used. Actel FPGAs can support this flow
because of the good correlation between pre-place-and-route
capacity and timing estimates and post-place-and-route
results. This is possible because of the abundant routing
resources available on Actel FPGAs. These resources ensure
that place-and-route issues don't impact capacity and
performance estimates.

The ASIC designer can ensure good synthesis results by
keeping a few key concepts in mind when using holds for
Actel FPGAs. Actel architecture, HLD coding style, and
methodology are the most important concepts and they are
covered in detail in the rest of this application note.

Actel FPGA Architecture

Actel FPGA devices are based on an architecture that is
inherently friendly to high-level synthesis tools. The Actel
logic module is optimal in implementing logic synthesized
from high-level tools. The logic module is small enough to be
efficient at implementing common functions produced by
synthesis tools (larger logic modules waste silicon area when
only simple functions are required), but it is powerful enough
to fit synthesis-produced, speed-critical functions into a
single logic module. (For example, a five-input NAND gate
and a 4-to-1 multiplexor each fit into a single Actel
combinatorial logic module.)

Actel devices also provide an abundance of routing resources
by using an antifuse interconnect element. The routing
resource available on every Actel device ensures that logic
placed into Actel logic modules can be efficiently
interconnected automatically. No designer intervention is
required. FPGA architectures that use other interconnect
technologies (such as SRAM or EPROM) must limit the
amount of interconnect available on the device; otherwise,
device sizes would grow beyond manufacturing limits. (For
example, an 8,000-gate SRAM device typically has 100,000
switching elements; the same-capacity Actel device has
700,000 elements, with a significantly smaller die size.) Thus,
the optimal module size and abundant routing resources of
Actel devices make them uncommonly friendly to high-level
design methodologies.

The Actel 1200XL device architecture is shown in detail in
Figure 1. The device is similar in structure to a channeled
gate array, with rows of logic modules separated by rows of
routing channels. Outputs from the logic modules enter the
routing channel and can be connected to any of the routing
tracks in the routing channel. Routing tracks are segmented,
offering the module output a variety of possible connections.
Long connections are available for signals that must span a
major portion of the device, and short tracks are available for
signals that need to span only a short distance. Module
outputs span multiple routing channels, giving each output
access to all tracks in the two channels above and below. This
large interconnect flexibility makes Actel devices very
routable and ensures that timing and capacity estimates
made by high-level tools can be achieved by the back-end
place-and-route tools.

September 1997
© 1997 Actel Corporation

5-35

et/

«+— Logic Modules

-e— Logic Module Output

«— Logic Modules

]— Routing Channel
\ N Routing Track

AN

“———— __ Antifuse Connections

Figure 1 = Actel 1200XL Device Architecture

The logic modules used in the Actel 1200XL devices are
shown in Figure 2. The combinatorial logic module is a 4-to-1
multiplexer with the addition of an AND gate on one select
line and an OR gate on the other select line. This logic
module can be used to construct a variety (over 760) of logic
functions by connecting the appropriate logic signal and
module inputs. Synthesis software automatically creates the
required logic functions from these modules, so logic
designers need not worry about the details of the logic
implementation. (However, it will be shown that a little
understanding of the multiplexer structure underlying the
Actel architecture can be useful to the high-level designer.)
The sequential module in the 1200XL family is similar to the
combinatorial module, with the addition of a D-type register
at the module output. One of the multiplexer select inputs
loses an input to make the active low clear function on the
register available. The register can also be turned into a
level-sensitive latch, if preferred.

High-Level Design Techniques

It is inherently easy to synthesize logic for Actel devices, but
the designer who understands some basics of the underlying
architecture can improve the efficiency of the resulting logic.
The two main categories under which these techniques fall
are coding style and methodology. Coding style is an
approach selected from the wealth of possible
implementations available in most high-level tools to
describe the required behavior of a logic function.
Methodology covers the sequence and the various steps
(flow) a designer selects to take a finished high-level design
description and translate it into silicon.

—{po —{po |

MUX MUX v
—m —m

Y |- Yyp ol
— o2 — o2
Clear

—{b3 — D3

S0 S1 S0 S1 T

1 O

Combinatorial
Logic Module

1 O

Sequential
Logic Module

Figure 2 = Actel 1200XL Logic Modules
Coding Style

The coding style a designer uses can either help or hinder the
synthesis tools in translating the desired logic function into
the targeted FPGA. Only a small amount of knowledge about
the underlying device architecture is needed to select
between alternative approaches to defining a desired logic
function. A simple but important example of this can be seen
when implementing select functions in high-level languages.
Two common alternative approaches to these functions (or
two different coding styles) would be to use IF/THEN/ELSE
statements or to use CASE statements. Each approach
implements the same logic function, but the implementation
in Actel FPGAs can be quite different. Figure 3 shows a 4-to-1
multiplexer described in a CASE statement in VHDL. The
CASE statement in the middle of the code implements a logic
function with one of the logic inputs (c, d, e, or f) selected by
the 2-bit vector s4 and provided on the output m2y. The
resulting implementation in an Actel logic module is also
shown in Figure 3. Only a single logic module is required,
since the synthesis software mapped the 4-to-1 select
function into a 4-to-1 multiplexer.

Figure 4 shows an alternative implementation of the select
function using IF/THEN/ELSE statements. Again, the 2-bit
vector s4 is used to select one of the four inputs (c, d, e, or f).
The function is identical to the function implemented
previously by using the CASE statement. The resulting
implementation in Actel, also shown in Figure 4, is much
different, however. The IF/THEN/ELSE logic results in a
multiple module implementation and increases both silicon
area and delay.

5-36

FPGA Design for ASIC-Experienced Designers

A VHDL function with multiplexer coding style would be the
following: The same VHDL function described previously using the

CASE statement, can be written as follows:

library ieee; _ _
use ieee.std_logic_1164.ALL; library ieee;
use ieee.std_logic_1164.ALL;
ENTITY mux IS .
PORT (c, d, e, f: IN std_logic; ENTITY my_if_then IS _
s4 : IN std_logic_vector(1 downto 1); PORT (c, d, e, f: IN std_logic;
m2y : OUT std_logic); s4 : IN std_logic_vector(1 downto 1);
END mux; B m2y : OUT std_logic);

END my_if_then;

ARCHITECTURE my_mux_behave OF mux IS)
ARCHITECTURE my_mux_behave OF my_if_then IS

BEGIN
BEGIN
CASE s4 IS)
WHEN “00” => m2y <= ¢; myifl : PROCESS (s4, c, d, e, f)
WHEN “01” => m2y <=d; BEGIN
WHEN “10” => m2y <= g;
WHEN others => m2y <=f; if s4 = “00” then
END CASE m2y <= c;
elsif s4="01" then
END PROCESS mux1 m2y <= d;
END my_mux_behave; elsif s4="10" then
m2y <= e;
]]] else
Synthesis would synthesize this VHDL as follows: m2y <= f;
endif
END PROCESS myifl;
cC—» .
END my_if_behave;
d— m2y
MUX
e —>»
f——
s4(1:0)

Figure 3 = CASE Statement Example

Thus, a designer who understands that Actel devices are
optimized for multiplexer-based logic will use CASE
statements when possible. This will result in the most
efficient silicon implementation when targeting Actel
devices, but it doesn’t require any device-specific code.

Another architectural aspect of Actel devices that the
knowledgeable designer should keep in mind is the structure
of the register used in the synchronous logic module. The
register is optimized for a D-type with an active low clear. In
addition, since the register is preceded by the combinatorial
logic module, many more complex register functions can be
synthesized by the high-level design software. For example,
Figure 5 shows the code for a clearable, D-type register with
an Enable. The Enable function can be implemented by the
synthesis software in a single logic module by using the
multiplexer in front of the register in the synchronous logic
module. Alternatively, when the designer uses random logic Figure 4 « If-Then-Else Example

5-37

et/

in front of the register, the synthesis software will specify
combinatorial logic, which can be implemented in the logic
module in front of the register. Using the simple register
description (simple D-type with active low clear) and CASE
statements for data-path selection will ensure that functions
such as a 4-to-1 multiplexer driving a D-type register
efficiently map into a single Actel module.

IF (clear =‘0") THEN
ELSIF (clk’'event and clk="1") THEN
IF (en='1") THEN

Q<=d;
END IF;
END IF;
—D QpF——-
—E

CLR

T

Figure 5 e Clearable D-type Register with an Enable

High-level designs often use complex data-path elements. The
designer who understands the relative size and performance
of these blocks can optimize the result by using proper coding
style. Take for example a data path that requires the addition
of two pairs of numbers. A sum needs to be generated for A,
and B,,, as well as for C,, and D,,. If the sums are not required
simultaneously, the designer might decide to select the
outputs after the sums are generated. The code for this
approach is given in Figure 6a. First the additions are
defined, and then the outputs are selected by using the
IF/THEN/ELSE statement. The resulting implementation
uses two adders and one multiplexer. If the designer realizes
that an adder is much more expensive than a multiplexer (in
terms of delay and module count), the definition can be
reordered to do the selection first and then the addition. The
code for this approach is shown in Figure 6b. The resulting
implementation requires two multiplexers, but a single
adder. This will result in considerable savings in both
modules and delay. Notice that resource sharing approaches
are architecturally independent. These savings would apply
to almost any target technology.

As shown earlier, coding style can have a major impact on the
resulting silicon implementation. The designer who
understands some key aspects of the underlying technology
or the resource costs for key functions can improve the
results generated from high-level design tools. With Actel
devices, a designer needs only to use CASE statements,
simple active low clearable registers, and resource sharing to

if (select)

sum <= A + B;
else

sum <= C + D;

A_
B— I

mux sum

C— I
D I
select

(a) Poor Resour ce Sharing Example

if (select)
templ <= A;
temp2 <= B;
else
templ <= C;
temp2 <= D;
sum <= templ + temp2;

A —
+
B —
select mux p——sum
C —
+
D —

(b) Correct Resour ce Sharing Example

Figure 6 = Resource Sharing Example

improve synthesis results. The optimal logic module and
abundant routing resources will ensure that the resulting
logic will be efficiently mapped into silicon.

Methodology

The methodology a designer selects for a design can also
influence the efficiency achieved with synthesis tools. For
example, FPGA devices that do a minimum amount of
postprocessing on the output of synthesis tools to fit the logic
into the device can provide accurate capacity and
performance estimates to the high-level tools. This reduces
the number of iterations required to go from a high-level
description to a silicon implementation of the design. Some
architectures must do postprocessing on the high-level
synthesis tool output to fit the logic into large logic modules,
while keeping the number of inputs to the module low so that
routing resources are not overtaxed. Actel devices require
very little postprocessing because of the optimal module size
and abundant routing resources.

5-38

FPGA Design for ASIC-Experienced Designers

Another methodology issue related to postprocessing is
backannotation of delays. If there is a good correlation
between the high-level logic and the postrouting fit, accurate
delay estimates can be provided to the synthesis tool for
timing analysis and simulation. If postprocessing has split
logic to improve routability, the correlation between logic
delays and the high-level logic representation will be broken,
reducing the accuracy of timing simulation to the point of
uselessness. In these cases, timing must be handled
differently and may break the desired development flow.
Again, Actel devices have a high correlation between
high-level timing estimates and post-place-and-route delays,
making backannotation for simulation easy and accurate.

Actel place-and-route tools are timing driven (Designer
Series 3.1), and the timing constraints can be passed from
the high-level tools. This allows top-level timing requirements
to be easily used by the designer to guide the low-level
place-and-route software, without the need to learn new tools
or introduce another source of data—thus minimizing the
possibility of errors. This “forward annotation” of delays is a
powerful feature of the Actel design flow. Pin assignment can
also be forward annotated, making it possible to specify
completely the function, pinout, and timing for the target
device, all at the highest level of the design.

Library support is also an important aspect of the
development methodology. Actel provides synthesis vendors
with special libraries composed of predesigned macros for
common logic functions. In addition, key high-level functions
(such as adders, counters, and FIFOs) are predesigned by
Actel and can be “called” by the synthesis tools on an
as-needed basis. ACTgen Macro Builder is an Actel software
tool that can create macros which can be instantiated in
Verilog or VHDL designs for synthesis using Synopsys and
many other industry synthesis tools.

These macros are defined in a high level language from which
you can generate a gate-level Verilog and VHDL netlist.
ACTgen can create additional macros that effectively use the
Actel architecture to achieve optimum performance, and
minimal module count to improve designer productivity.

As each application has its unique attributes, flexibility of
design is important. For example, an application may require
a nine-bit up counter with enable whereas, another
application may require a 22-bit up/down counter. Building a
library to support this type of flexibility is difficult; however,
the ACTgen Macro Builder provides this needed flexibility for
demanding applications.

For more information about ACTgen Macro Builder, refer to
the “Designer Series Development System” document in
Section 3 of this Data Book.

A new approach to synthesis just now reaching the market
does not use the library approach for random logic Boolean
equations; instead it implements logic directly in the Actel
logic module. This “libraryless” approach improves efficiency
since the Actel module can create so many logic functions.
Because it is unwieldy to create a library containing all
possible elements, the required logic function is generated
instead by using the Actel logic module directly. This
improves efficiency when the function required is not a
common function and would be overlooked by a library-based
approach. For example, the logic function shown in Figure 7
would normally map into two logic modules, one a two-input
XOR and the other a two-input OR. Synthesis software that
maps directly into the Actel logic module (CM8) would find
the solution where the entire function fits into a single Actel
logic module. The resulting implementation, shown in
Figure 8, requires a single logic module and only a single level
of delay.

Conclusion

Actel devices are inherently efficient for high-level designs
because of their optimized logic modules and abundant
routing resources. Experienced designers have found ways to
squeeze even more efficiency out of these devices by
understanding the influences of coding style and
methodology on the resulting silicon implementation. Simple
things such as using CASE statements and active low
clearable registers can get the last drop of efficiency out of a
design. The ability of high-level tools to accurately estimate
capacity and performance when mapping to Actel devices
also increases the efficiency of using these tools. Using Actel
devices and high-level design tools, a designer has the
capability to move up to higher-complexity designs.

- >

1] -

Figure 7 = Two Module Implementation

5-39

et/

GND —— DO
VCC —— D1
VCC — | p2
GND ——— D3

S

Figure 8 = Single Module CM8 Implementation

5-40

	FPGA Design for ASIC-Experienced Designers
	FPGA Design with High-Level Design Tools
	Actel FPGA Architecture
	High-Level Design Techniques
	Coding Style
	Methodology

	Conclusion

